--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - ServiceNow-AI/Apriel-1.5-15b-Thinker --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [ServiceNow-AI/Apriel-1.5-15b-Thinker](https://huggingface.co/ServiceNow-AI/Apriel-1.5-15b-Thinker). ### Example usage: ```python import re import requests import torch from PIL import Image from transformers import AutoProcessor, AutoModelForImageTextToText # Load model model_id = "tiny-random/apriel-1.5" model = AutoModelForImageTextToText.from_pretrained( model_id, dtype=torch.bfloat16, device_map="auto" ) processor = AutoProcessor.from_pretrained(model_id) url = "https://picsum.photos/id/237/200/300" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") chat = [ { "role": "user", "content": [ {"type": "text", "text": "Which animal is this?"}, {"type": "image"}, ], } ] prompt = processor.apply_chat_template(chat, add_generation_prompt=True, tokenize=False) inputs = processor(text=prompt, images=[image], return_tensors="pt").to(model.device) inputs.pop("token_type_ids", None) inputs['pixel_values'] = inputs['pixel_values'].to(model.dtype) with torch.no_grad(): output_ids = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.6) generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] output = processor.decode(generated_ids[0], skip_special_tokens=False) print("Image Response:", output) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, AutoModelForImageTextToText, set_seed, ) source_model_id = "ServiceNow-AI/Apriel-1.5-15b-Thinker" save_folder = "/tmp/tiny-random/apriel-1.5" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['text_config'].update({ 'head_dim': 32, 'hidden_size': 8, 'intermediate_size': 64, 'num_hidden_layers': 2, 'num_attention_heads': 8, 'num_key_value_heads': 4, }) config_json['vision_config'].update( { 'head_dim': 32, 'intermediate_size': 256, 'hidden_size': 32 * 4, 'num_attention_heads': 4, 'num_hidden_layers': 2, } ) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForImageTextToText.from_config(config, trust_remote_code=True).to(torch.bfloat16) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text LlavaForConditionalGeneration( (model): LlavaModel( (vision_tower): PixtralVisionModel( (patch_conv): Conv2d(3, 128, kernel_size=(16, 16), stride=(16, 16), bias=False) (ln_pre): PixtralRMSNorm((128,), eps=1e-05) (transformer): PixtralTransformer( (layers): ModuleList( (0-1): 2 x PixtralAttentionLayer( (attention_norm): PixtralRMSNorm((128,), eps=1e-05) (feed_forward): PixtralMLP( (gate_proj): Linear(in_features=128, out_features=256, bias=False) (up_proj): Linear(in_features=128, out_features=256, bias=False) (down_proj): Linear(in_features=256, out_features=128, bias=False) (act_fn): SiLU() ) (attention): PixtralAttention( (k_proj): Linear(in_features=128, out_features=128, bias=False) (v_proj): Linear(in_features=128, out_features=128, bias=False) (q_proj): Linear(in_features=128, out_features=128, bias=False) (o_proj): Linear(in_features=128, out_features=128, bias=False) ) (ffn_norm): PixtralRMSNorm((128,), eps=1e-05) ) ) ) (patch_positional_embedding): PixtralRotaryEmbedding() ) (multi_modal_projector): LlavaMultiModalProjector( (linear_1): Linear(in_features=128, out_features=8, bias=True) (act): GELUActivation() (linear_2): Linear(in_features=8, out_features=8, bias=True) ) (language_model): MistralModel( (embed_tokens): Embedding(131072, 8) (layers): ModuleList( (0-1): 2 x MistralDecoderLayer( (self_attn): MistralAttention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (mlp): MistralMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): MistralRMSNorm((8,), eps=1e-05) (post_attention_layernorm): MistralRMSNorm((8,), eps=1e-05) ) ) (norm): MistralRMSNorm((8,), eps=1e-05) (rotary_emb): MistralRotaryEmbedding() ) ) (lm_head): Linear(in_features=8, out_features=131072, bias=False) ) ```