File size: 5,925 Bytes
e9a82a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
library_name: transformers
base_model:
- MiniMaxAI/MiniMax-M2.5
---

This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [MiniMaxAI/MiniMax-M2.5](https://huggingface.co/MiniMaxAI/MiniMax-M2.5).

| File path | Size |
|------|------|
| model.safetensors | 7.1MB |


### Example usage:

- vLLM

```bash
vllm serve tiny-random/minimax-m2.5 --trust-remote-code --reasoning-parser minimax_m2_append_think --enable-auto-tool-choice --tool-call-parser minimax_m2
```

- Transformers

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "tiny-random/minimax-m2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    dtype=torch.bfloat16,
    trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model,
                tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.', max_new_tokens=16))
```

### Codes to create this repo:

<details>
<summary>Click to expand</summary>

```python
import json
from pathlib import Path

import accelerate
import torch
import transformers
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)
# try:
#     from transformers.utils.output_capturing import OutputRecorder, capture_outputs
#     transformers.utils.generic.OutputRecorder = OutputRecorder
#     transformers.utils.generic.capture_outputs = capture_outputs
#     transformers.utils.generic.check_model_inputs = capture_outputs
#     transformers.modeling_rope_utils.ROPE_INIT_FUNCTIONS['default'] = transformers.modeling_rope_utils.ROPE_INIT_FUNCTIONS['linear']
# except ImportError:
#     pass

source_model_id = "MiniMaxAI/MiniMax-M2.5"
save_folder = "/tmp/tiny-random/minimax-m25"

processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)

config_json["attn_type_list"] = [1, 1]
# del config_json['auto_map']
# del config_json['num_mtp_modules']
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'

config_json['head_dim'] = 32
config_json['hidden_size'] = 8
config_json['intermediate_size'] = 32
config_json['num_attention_heads'] = 8
config_json['num_key_value_heads'] = 4
config_json['num_hidden_layers'] = 2
config_json['mlp_intermediate_size'] = 32
# config_json['num_local_experts'] = 32
config_json['rotary_dim'] = 16
del config_json['quantization_config']

with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
# config.standardize_rope_params()
# config.rope_parameters['rope_type'] = 'linear'
# config.rope_parameters['factor'] = 1.0
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
print(model)

# according to source model, gate is in FP32
for i in range(config.num_hidden_layers):
    model.model.layers[i].block_sparse_moe.gate = model.model.layers[i].block_sparse_moe.gate.float()
    model.model.layers[i].block_sparse_moe.e_score_correction_bias = model.model.layers[i].block_sparse_moe.e_score_correction_bias.float()
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)

automap = config_json['auto_map']
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
    config_json = json.load(f)
    config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
```

</details>

### Printing the model:

<details><summary>Click to expand</summary>

```text
MiniMaxM2ForCausalLM(
  (model): MiniMaxM2Model(
    (embed_tokens): Embedding(200064, 8)
    (layers): ModuleList(
      (0-1): 2 x MiniMaxM2DecoderLayer(
        (self_attn): MiniMaxM2Attention(
          (q_proj): Linear(in_features=8, out_features=256, bias=False)
          (k_proj): Linear(in_features=8, out_features=128, bias=False)
          (v_proj): Linear(in_features=8, out_features=128, bias=False)
          (o_proj): Linear(in_features=256, out_features=8, bias=False)
          (q_norm): MiniMaxM2RMSNorm((256,), eps=1e-06)
          (k_norm): MiniMaxM2RMSNorm((128,), eps=1e-06)
        )
        (block_sparse_moe): MiniMaxM2SparseMoeBlock(
          (gate): Linear(in_features=8, out_features=256, bias=False)
          (experts): MiniMaxM2Experts(
            (0-255): 256 x MiniMaxM2MLP(
              (w1): Linear(in_features=8, out_features=32, bias=False)
              (w2): Linear(in_features=32, out_features=8, bias=False)
              (w3): Linear(in_features=8, out_features=32, bias=False)
              (act_fn): SiLUActivation()
            )
          )
        )
        (input_layernorm): MiniMaxM2RMSNorm((8,), eps=1e-06)
        (post_attention_layernorm): MiniMaxM2RMSNorm((8,), eps=1e-06)
      )
    )
    (norm): MiniMaxM2RMSNorm((8,), eps=1e-06)
    (rotary_emb): MiniMaxM2RotaryEmbedding()
  )
  (lm_head): Linear(in_features=8, out_features=200064, bias=False)
)
```

</details>