--- library_name: transformers base_model: - Qwen/Qwen3.5-397B-A17B --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Qwen/Qwen3.5-397B-A17B](https://huggingface.co/Qwen/Qwen3.5-397B-A17B). | File path | Size | |------|------| | model.safetensors | 9.6MB | ### Example usage: - vLLM ```bash # Multi-token prediction is supported model_id=tiny-random/qwen3.5-moe vllm serve $model_id \ --tensor-parallel-size 2 \ --speculative-config.method qwen3_next_mtp \ --speculative-config.num_speculative_tokens 2 \ --reasoning-parser qwen3 \ --tool-call-parser qwen3_coder \ --enable-auto-tool-choice \ --max-cudagraph-capture-size 16 ``` - SGLang ```bash # Multi-token prediction is supported model_id=tiny-random/qwen3.5-moe python3 -m sglang.launch_server \ --model-path $model_id \ --tp-size 2 \ --tool-call-parser qwen3_coder \ --reasoning-parser qwen3 \ --speculative-algo NEXTN \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 ``` - Transformers ```python import numpy as np import torch import transformers from PIL import Image from transformers import ( AutoModel, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, Qwen3_5MoeForConditionalGeneration, ) model_id = "tiny-random/qwen3.5-moe" model = Qwen3_5MoeForConditionalGeneration.from_pretrained( model_id, dtype=torch.bfloat16, device_map="cuda", ) processor = AutoProcessor.from_pretrained(model_id) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=32) output_text = processor.batch_decode(generated_ids[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) print(output_text) ``` ### Codes to create this repo:
Click to expand ```python import json from copy import deepcopy from pathlib import Path import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, Qwen3_5MoeForConditionalGeneration, set_seed, ) source_model_id = "Qwen/Qwen3.5-397B-A17B" save_folder = "/tmp/tiny-random/qwen35-moe" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['text_config'].update({ 'head_dim': 32, 'hidden_size': 8, "layer_types": ['linear_attention'] * 3 + ['full_attention'], 'intermediate_size': 32, 'moe_intermediate_size': 32, 'num_hidden_layers': 4, 'num_attention_heads': 8, 'num_key_value_heads': 4, 'num_experts': 128, # "num_experts_per_tok": 10, 'shared_expert_intermediate_size': 32, "linear_key_head_dim": 32, "linear_num_key_heads": 4, "linear_num_value_heads": 8, "linear_value_head_dim": 32, }) config_json['text_config']['rope_parameters']['mrope_section'] = [1, 1, 2] config_json["tie_word_embeddings"] = False config_json['vision_config'].update( { 'hidden_size': 64, 'intermediate_size': 128, 'num_heads': 2, 'out_hidden_size': 8, 'depth': 2, } ) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = Qwen3_5MoeForConditionalGeneration(config) with torch.no_grad(): for i in range(3): attn = model.model.language_model.layers[i].linear_attn attn.A_log = torch.nn.Parameter(attn.A_log.float()) attn.norm.float() print(model.state_dict()['model.language_model.layers.0.linear_attn.A_log'].dtype) print(model.state_dict()['model.language_model.layers.0.linear_attn.norm.weight'].dtype) model.mtp = torch.nn.ModuleDict({ "pre_fc_norm_embedding": torch.nn.RMSNorm(config.text_config.hidden_size), "fc": torch.nn.Linear(config.text_config.hidden_size * 2, config.text_config.hidden_size, bias=False), "layers": torch.nn.ModuleList([deepcopy(model.model.language_model.layers[3])]), "norm": torch.nn.RMSNorm(config.text_config.hidden_size), "pre_fc_norm_hidden": torch.nn.RMSNorm(config.text_config.hidden_size), }) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ```
### Printing the model:
Click to expand ```text Qwen3_5MoeForConditionalGeneration( (model): Qwen3_5MoeModel( (visual): Qwen3_5MoeVisionModel( (patch_embed): Qwen3_5MoeVisionPatchEmbed( (proj): Conv3d(3, 64, kernel_size=(2, 16, 16), stride=(2, 16, 16)) ) (pos_embed): Embedding(2304, 64) (rotary_pos_emb): Qwen3_5MoeVisionRotaryEmbedding() (blocks): ModuleList( (0-1): 2 x Qwen3_5MoeVisionBlock( (norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (attn): Qwen3_5MoeVisionAttention( (qkv): Linear(in_features=64, out_features=192, bias=True) (proj): Linear(in_features=64, out_features=64, bias=True) ) (mlp): Qwen3_5MoeVisionMLP( (linear_fc1): Linear(in_features=64, out_features=128, bias=True) (linear_fc2): Linear(in_features=128, out_features=64, bias=True) (act_fn): GELUTanh() ) ) ) (merger): Qwen3_5MoeVisionPatchMerger( (norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (linear_fc1): Linear(in_features=256, out_features=256, bias=True) (act_fn): GELU(approximate='none') (linear_fc2): Linear(in_features=256, out_features=8, bias=True) ) ) (language_model): Qwen3_5MoeTextModel( (embed_tokens): Embedding(248320, 8) (layers): ModuleList( (0-2): 3 x Qwen3_5MoeDecoderLayer( (linear_attn): Qwen3_5MoeGatedDeltaNet( (act): SiLUActivation() (conv1d): Conv1d(512, 512, kernel_size=(4,), stride=(1,), padding=(3,), groups=512, bias=False) (norm): FusedRMSNormGated(32, eps=1e-06, activation=silu) (out_proj): Linear(in_features=256, out_features=8, bias=False) (in_proj_qkv): Linear(in_features=8, out_features=512, bias=False) (in_proj_z): Linear(in_features=8, out_features=256, bias=False) (in_proj_b): Linear(in_features=8, out_features=8, bias=False) (in_proj_a): Linear(in_features=8, out_features=8, bias=False) ) (mlp): Qwen3_5MoeSparseMoeBlock( (gate): Qwen3_5MoeTopKRouter() (experts): Qwen3_5MoeExperts( (act_fn): SiLUActivation() ) (shared_expert): Qwen3_5MoeMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) ) (3): Qwen3_5MoeDecoderLayer( (self_attn): Qwen3_5MoeAttention( (q_proj): Linear(in_features=8, out_features=512, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): Qwen3_5MoeRMSNorm((32,), eps=1e-06) (k_norm): Qwen3_5MoeRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3_5MoeSparseMoeBlock( (gate): Qwen3_5MoeTopKRouter() (experts): Qwen3_5MoeExperts( (act_fn): SiLUActivation() ) (shared_expert): Qwen3_5MoeMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) ) ) (norm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) (rotary_emb): Qwen3_5MoeTextRotaryEmbedding() ) ) (lm_head): Linear(in_features=8, out_features=248320, bias=False) (mtp): ModuleDict( (pre_fc_norm_embedding): RMSNorm((8,), eps=None, elementwise_affine=True) (fc): Linear(in_features=16, out_features=8, bias=False) (layers): ModuleList( (0): Qwen3_5MoeDecoderLayer( (self_attn): Qwen3_5MoeAttention( (q_proj): Linear(in_features=8, out_features=512, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): Qwen3_5MoeRMSNorm((32,), eps=1e-06) (k_norm): Qwen3_5MoeRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3_5MoeSparseMoeBlock( (gate): Qwen3_5MoeTopKRouter() (experts): Qwen3_5MoeExperts( (act_fn): SiLUActivation() ) (shared_expert): Qwen3_5MoeMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3_5MoeRMSNorm((8,), eps=1e-06) ) ) (norm): RMSNorm((8,), eps=None, elementwise_affine=True) (pre_fc_norm_hidden): RMSNorm((8,), eps=None, elementwise_affine=True) ) ) ```