File size: 6,332 Bytes
e97d105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "transformers>=4.45.0",
#     "peft>=0.7.0",
#     "torch",
#     "huggingface_hub",
# ]
# ///
"""
Evaluate QMD query expansion model quality.

Generates expansions for test queries and outputs results for review.
"""

import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Test queries covering different QMD use cases
TEST_QUERIES = [
    # Technical documentation
    "how to configure authentication",
    "typescript async await",
    "docker compose networking",
    "git rebase vs merge",
    "react useEffect cleanup",

    # Short/ambiguous queries
    "auth",
    "config",
    "setup",
    "api",

    # Personal notes / journals style
    "meeting notes project kickoff",
    "ideas for new feature",
    "todo list app architecture",

    # Research / learning
    "what is dependency injection",
    "difference between sql and nosql",
    "kubernetes vs docker swarm",

    # Error/debugging
    "connection timeout error",
    "memory leak debugging",
    "cors error fix",

    # Complex queries
    "how to implement caching with redis in nodejs",
    "best practices for api rate limiting",
    "setting up ci cd pipeline with github actions",
]

PROMPT_TEMPLATE = """You are a search query optimization expert. Transform the query into retrieval-optimized outputs.

Query: {query}

Output format:
lex: {{keyword variation}}
vec: {{semantic reformulation}}
hyde: {{hypothetical document passage}}

Output:"""


def load_model(model_name: str, base_model: str = "Qwen/Qwen3-0.6B"):
    """Load the finetuned model."""
    print(f"Loading tokenizer from {base_model}...")
    tokenizer = AutoTokenizer.from_pretrained(base_model)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    print(f"Loading base model...")
    base = AutoModelForCausalLM.from_pretrained(
        base_model,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )

    print(f"Loading adapter from {model_name}...")
    model = PeftModel.from_pretrained(base, model_name)
    model.eval()

    return model, tokenizer


def generate_expansion(model, tokenizer, query: str, max_new_tokens: int = 200) -> str:
    """Generate query expansion."""
    prompt = PROMPT_TEMPLATE.format(query=query)

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.7,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    # Decode and extract just the generated part
    full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Remove the prompt to get just the expansion
    if "Output:" in full_output:
        expansion = full_output.split("Output:")[-1].strip()
    else:
        expansion = full_output[len(prompt):].strip()

    return expansion


def evaluate_expansion(query: str, expansion: str) -> dict:
    """Basic automatic evaluation metrics."""
    lines = expansion.strip().split("\n")

    has_lex = any(l.strip().startswith("lex:") for l in lines)
    has_vec = any(l.strip().startswith("vec:") for l in lines)
    has_hyde = any(l.strip().startswith("hyde:") for l in lines)

    # Count valid lines
    valid_lines = sum(1 for l in lines if l.strip().startswith(("lex:", "vec:", "hyde:")))

    # Check for repetition
    contents = []
    for l in lines:
        if ":" in l:
            contents.append(l.split(":", 1)[1].strip().lower())
    unique_contents = len(set(contents))

    return {
        "has_lex": has_lex,
        "has_vec": has_vec,
        "has_hyde": has_hyde,
        "valid_lines": valid_lines,
        "total_lines": len(lines),
        "unique_contents": unique_contents,
        "format_score": (has_lex + has_vec + has_hyde) / 3,
    }


def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", default="tobil/qmd-query-expansion-0.6B",
                        help="Model to evaluate")
    parser.add_argument("--base-model", default="Qwen/Qwen3-0.6B",
                        help="Base model")
    parser.add_argument("--output", default="evaluation_results.json",
                        help="Output file for results")
    parser.add_argument("--queries", type=str, help="Custom queries file (one per line)")
    args = parser.parse_args()

    # Load custom queries if provided
    queries = TEST_QUERIES
    if args.queries:
        with open(args.queries) as f:
            queries = [l.strip() for l in f if l.strip()]

    # Load model
    model, tokenizer = load_model(args.model, args.base_model)

    # Run evaluation
    results = []
    print(f"\n{'='*70}")
    print("EVALUATION RESULTS")
    print(f"{'='*70}\n")

    for i, query in enumerate(queries, 1):
        print(f"[{i}/{len(queries)}] Query: {query}")
        print("-" * 50)

        expansion = generate_expansion(model, tokenizer, query)
        metrics = evaluate_expansion(query, expansion)

        print(expansion)
        print(f"\n  Format: {'✓' if metrics['format_score'] == 1.0 else '⚠'} "
              f"(lex:{metrics['has_lex']}, vec:{metrics['has_vec']}, hyde:{metrics['has_hyde']})")
        print(f"  Lines: {metrics['valid_lines']}/{metrics['total_lines']} valid, "
              f"{metrics['unique_contents']} unique")
        print()

        results.append({
            "query": query,
            "expansion": expansion,
            "metrics": metrics,
        })

    # Summary
    print(f"\n{'='*70}")
    print("SUMMARY")
    print(f"{'='*70}")

    avg_format = sum(r["metrics"]["format_score"] for r in results) / len(results)
    full_format = sum(1 for r in results if r["metrics"]["format_score"] == 1.0)

    print(f"  Total queries: {len(results)}")
    print(f"  Average format score: {avg_format:.2%}")
    print(f"  Full format compliance: {full_format}/{len(results)} ({full_format/len(results):.0%})")

    # Save results
    with open(args.output, "w") as f:
        json.dump(results, f, indent=2)
    print(f"\n  Results saved to: {args.output}")


if __name__ == "__main__":
    main()