File size: 6,332 Bytes
e97d105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "transformers>=4.45.0",
# "peft>=0.7.0",
# "torch",
# "huggingface_hub",
# ]
# ///
"""
Evaluate QMD query expansion model quality.
Generates expansions for test queries and outputs results for review.
"""
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Test queries covering different QMD use cases
TEST_QUERIES = [
# Technical documentation
"how to configure authentication",
"typescript async await",
"docker compose networking",
"git rebase vs merge",
"react useEffect cleanup",
# Short/ambiguous queries
"auth",
"config",
"setup",
"api",
# Personal notes / journals style
"meeting notes project kickoff",
"ideas for new feature",
"todo list app architecture",
# Research / learning
"what is dependency injection",
"difference between sql and nosql",
"kubernetes vs docker swarm",
# Error/debugging
"connection timeout error",
"memory leak debugging",
"cors error fix",
# Complex queries
"how to implement caching with redis in nodejs",
"best practices for api rate limiting",
"setting up ci cd pipeline with github actions",
]
PROMPT_TEMPLATE = """You are a search query optimization expert. Transform the query into retrieval-optimized outputs.
Query: {query}
Output format:
lex: {{keyword variation}}
vec: {{semantic reformulation}}
hyde: {{hypothetical document passage}}
Output:"""
def load_model(model_name: str, base_model: str = "Qwen/Qwen3-0.6B"):
"""Load the finetuned model."""
print(f"Loading tokenizer from {base_model}...")
tokenizer = AutoTokenizer.from_pretrained(base_model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f"Loading base model...")
base = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
print(f"Loading adapter from {model_name}...")
model = PeftModel.from_pretrained(base, model_name)
model.eval()
return model, tokenizer
def generate_expansion(model, tokenizer, query: str, max_new_tokens: int = 200) -> str:
"""Generate query expansion."""
prompt = PROMPT_TEMPLATE.format(query=query)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Decode and extract just the generated part
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt to get just the expansion
if "Output:" in full_output:
expansion = full_output.split("Output:")[-1].strip()
else:
expansion = full_output[len(prompt):].strip()
return expansion
def evaluate_expansion(query: str, expansion: str) -> dict:
"""Basic automatic evaluation metrics."""
lines = expansion.strip().split("\n")
has_lex = any(l.strip().startswith("lex:") for l in lines)
has_vec = any(l.strip().startswith("vec:") for l in lines)
has_hyde = any(l.strip().startswith("hyde:") for l in lines)
# Count valid lines
valid_lines = sum(1 for l in lines if l.strip().startswith(("lex:", "vec:", "hyde:")))
# Check for repetition
contents = []
for l in lines:
if ":" in l:
contents.append(l.split(":", 1)[1].strip().lower())
unique_contents = len(set(contents))
return {
"has_lex": has_lex,
"has_vec": has_vec,
"has_hyde": has_hyde,
"valid_lines": valid_lines,
"total_lines": len(lines),
"unique_contents": unique_contents,
"format_score": (has_lex + has_vec + has_hyde) / 3,
}
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="tobil/qmd-query-expansion-0.6B",
help="Model to evaluate")
parser.add_argument("--base-model", default="Qwen/Qwen3-0.6B",
help="Base model")
parser.add_argument("--output", default="evaluation_results.json",
help="Output file for results")
parser.add_argument("--queries", type=str, help="Custom queries file (one per line)")
args = parser.parse_args()
# Load custom queries if provided
queries = TEST_QUERIES
if args.queries:
with open(args.queries) as f:
queries = [l.strip() for l in f if l.strip()]
# Load model
model, tokenizer = load_model(args.model, args.base_model)
# Run evaluation
results = []
print(f"\n{'='*70}")
print("EVALUATION RESULTS")
print(f"{'='*70}\n")
for i, query in enumerate(queries, 1):
print(f"[{i}/{len(queries)}] Query: {query}")
print("-" * 50)
expansion = generate_expansion(model, tokenizer, query)
metrics = evaluate_expansion(query, expansion)
print(expansion)
print(f"\n Format: {'✓' if metrics['format_score'] == 1.0 else '⚠'} "
f"(lex:{metrics['has_lex']}, vec:{metrics['has_vec']}, hyde:{metrics['has_hyde']})")
print(f" Lines: {metrics['valid_lines']}/{metrics['total_lines']} valid, "
f"{metrics['unique_contents']} unique")
print()
results.append({
"query": query,
"expansion": expansion,
"metrics": metrics,
})
# Summary
print(f"\n{'='*70}")
print("SUMMARY")
print(f"{'='*70}")
avg_format = sum(r["metrics"]["format_score"] for r in results) / len(results)
full_format = sum(1 for r in results if r["metrics"]["format_score"] == 1.0)
print(f" Total queries: {len(results)}")
print(f" Average format score: {avg_format:.2%}")
print(f" Full format compliance: {full_format}/{len(results)} ({full_format/len(results):.0%})")
# Save results
with open(args.output, "w") as f:
json.dump(results, f, indent=2)
print(f"\n Results saved to: {args.output}")
if __name__ == "__main__":
main()
|