Update README.md
Browse files
README.md
CHANGED
|
@@ -18,7 +18,10 @@ Together partnered with LAION and Ontocord.ai, who both helped curate the datase
|
|
| 18 |
You can read more about this process and the availability of this dataset in LAION’s blog post [here](https://laion.ai/blog/oig-dataset/).
|
| 19 |
|
| 20 |
In addition to the aforementioned fine-tuning, Pythia-Chat-Base-7B-v0.16 has also undergone further fine-tuning via a small amount of feedback data.
|
| 21 |
-
This allows the model to better adapt to human preferences in the conversations.
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Model Details
|
| 24 |
- **Developed by**: Together Computer.
|
|
@@ -30,18 +33,59 @@ This allows the model to better adapt to human preferences in the conversations.
|
|
| 30 |
|
| 31 |
# Quick Start
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
```python
|
| 34 |
-
from transformers import
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
```
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
```python
|
| 40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
| 42 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
```
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
## Strengths of the model
|
| 46 |
|
| 47 |
There are several tasks that OpenChatKit excels at out of the box. This includes:
|
|
|
|
| 18 |
You can read more about this process and the availability of this dataset in LAION’s blog post [here](https://laion.ai/blog/oig-dataset/).
|
| 19 |
|
| 20 |
In addition to the aforementioned fine-tuning, Pythia-Chat-Base-7B-v0.16 has also undergone further fine-tuning via a small amount of feedback data.
|
| 21 |
+
This process allows the model to better adapt to human preferences in the conversations.
|
| 22 |
+
|
| 23 |
+
One of the notable features of Pythia-Chat-Base-7B-v0.16 is its ability to **run inference on a 12GB GPU**, thanks to the quantization technique.
|
| 24 |
+
This makes the model not only highly accurate and efficient but also accessible to a wider range of users and hardware configurations.
|
| 25 |
|
| 26 |
## Model Details
|
| 27 |
- **Developed by**: Together Computer.
|
|
|
|
| 33 |
|
| 34 |
# Quick Start
|
| 35 |
|
| 36 |
+
## GPU Inference
|
| 37 |
+
|
| 38 |
+
This requires a GPU with 16GB memory.
|
| 39 |
```python
|
| 40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 41 |
+
|
| 42 |
+
# init
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", torch_dtype=torch.float16)
|
| 45 |
+
model = model.to('cuda:0')
|
| 46 |
+
|
| 47 |
+
# infer
|
| 48 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
| 49 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
| 50 |
+
output_str = tokenizer.decode(outputs[0])
|
| 51 |
+
print(output_str)
|
| 52 |
```
|
| 53 |
+
|
| 54 |
+
## GPU Inference in Int8
|
| 55 |
+
|
| 56 |
+
This requires a GPU with 12GB memory.
|
| 57 |
```python
|
| 58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 59 |
+
|
| 60 |
+
# init
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
| 62 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", device_map="auto", load_in_8bit=True)
|
| 63 |
+
|
| 64 |
+
# infer
|
| 65 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
| 66 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
| 67 |
+
output_str = tokenizer.decode(outputs[0])
|
| 68 |
+
print(output_str)
|
| 69 |
```
|
| 70 |
|
| 71 |
+
|
| 72 |
+
## CPU Inference
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 76 |
+
|
| 77 |
+
# init
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
| 79 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", torch_dtype=torch.bfloat16)
|
| 80 |
+
|
| 81 |
+
# infer
|
| 82 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
| 83 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
| 84 |
+
output_str = tokenizer.decode(outputs[0])
|
| 85 |
+
print(output_str)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
|
| 89 |
## Strengths of the model
|
| 90 |
|
| 91 |
There are several tasks that OpenChatKit excels at out of the box. This includes:
|