Create training_nli_matryoshka.py
Browse files- training_nli_matryoshka.py +106 -0
training_nli_matryoshka.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Matryoshka test
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
from typing import Dict
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets import Dataset
|
| 6 |
+
from sentence_transformers import (
|
| 7 |
+
SentenceTransformer,
|
| 8 |
+
SentenceTransformerTrainer,
|
| 9 |
+
losses,
|
| 10 |
+
evaluation,
|
| 11 |
+
TrainingArguments
|
| 12 |
+
)
|
| 13 |
+
from sentence_transformers.models import Transformer, Pooling
|
| 14 |
+
|
| 15 |
+
def to_triplets(dataset):
|
| 16 |
+
premises = defaultdict(dict)
|
| 17 |
+
for sample in dataset:
|
| 18 |
+
premises[sample["premise"]][sample["label"]] = sample["hypothesis"]
|
| 19 |
+
queries = []
|
| 20 |
+
positives = []
|
| 21 |
+
negatives = []
|
| 22 |
+
for premise, sentences in premises.items():
|
| 23 |
+
if 0 in sentences and 2 in sentences:
|
| 24 |
+
queries.append(premise)
|
| 25 |
+
positives.append(sentences[0]) # <- entailment
|
| 26 |
+
negatives.append(sentences[2]) # <- contradiction
|
| 27 |
+
return Dataset.from_dict({
|
| 28 |
+
"anchor": queries,
|
| 29 |
+
"positive": positives,
|
| 30 |
+
"negative": negatives,
|
| 31 |
+
})
|
| 32 |
+
|
| 33 |
+
snli_ds = datasets.load_dataset("snli")
|
| 34 |
+
snli_ds = datasets.DatasetDict({
|
| 35 |
+
"train": to_triplets(snli_ds["train"]),
|
| 36 |
+
"validation": to_triplets(snli_ds["validation"]),
|
| 37 |
+
"test": to_triplets(snli_ds["test"]),
|
| 38 |
+
})
|
| 39 |
+
multi_nli_ds = datasets.load_dataset("multi_nli")
|
| 40 |
+
multi_nli_ds = datasets.DatasetDict({
|
| 41 |
+
"train": to_triplets(multi_nli_ds["train"]),
|
| 42 |
+
"validation_matched": to_triplets(multi_nli_ds["validation_matched"]),
|
| 43 |
+
})
|
| 44 |
+
|
| 45 |
+
all_nli_ds = datasets.DatasetDict({
|
| 46 |
+
"train": datasets.concatenate_datasets([snli_ds["train"], multi_nli_ds["train"]]),
|
| 47 |
+
"validation": datasets.concatenate_datasets([snli_ds["validation"], multi_nli_ds["validation_matched"]]),
|
| 48 |
+
"test": snli_ds["test"]
|
| 49 |
+
})
|
| 50 |
+
|
| 51 |
+
stsb_dev = datasets.load_dataset("mteb/stsbenchmark-sts", split="validation")
|
| 52 |
+
stsb_test = datasets.load_dataset("mteb/stsbenchmark-sts", split="test")
|
| 53 |
+
|
| 54 |
+
training_args = TrainingArguments(
|
| 55 |
+
output_dir="checkpoints",
|
| 56 |
+
num_train_epochs=1,
|
| 57 |
+
seed=42,
|
| 58 |
+
per_device_train_batch_size=64,
|
| 59 |
+
per_device_eval_batch_size=64,
|
| 60 |
+
learning_rate=2e-5,
|
| 61 |
+
warmup_ratio=0.1,
|
| 62 |
+
bf16=True,
|
| 63 |
+
logging_steps=10,
|
| 64 |
+
evaluation_strategy="steps",
|
| 65 |
+
eval_steps=300,
|
| 66 |
+
save_steps=1000,
|
| 67 |
+
save_total_limit=2,
|
| 68 |
+
metric_for_best_model="spearman_cosine",
|
| 69 |
+
greater_is_better=True,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
transformer = Transformer("microsoft/mpnet-base", max_seq_length=384)
|
| 73 |
+
pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean")
|
| 74 |
+
model = SentenceTransformer(modules=[transformer, pooling])
|
| 75 |
+
|
| 76 |
+
tokenizer = model.tokenizer
|
| 77 |
+
loss = losses.MultipleNegativesRankingLoss(model)
|
| 78 |
+
loss = losses.MatryoshkaLoss(model, loss, [768, 512, 256, 128, 64])
|
| 79 |
+
|
| 80 |
+
dev_evaluator = evaluation.EmbeddingSimilarityEvaluator(
|
| 81 |
+
stsb_dev["sentence1"],
|
| 82 |
+
stsb_dev["sentence2"],
|
| 83 |
+
[score / 5 for score in stsb_dev["score"]],
|
| 84 |
+
main_similarity=evaluation.SimilarityFunction.COSINE,
|
| 85 |
+
name="sts-dev",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
trainer = SentenceTransformerTrainer(
|
| 89 |
+
model=model,
|
| 90 |
+
evaluator=dev_evaluator,
|
| 91 |
+
args=training_args,
|
| 92 |
+
train_dataset=all_nli_ds["train"],
|
| 93 |
+
# eval_dataset=all_nli_ds["validation"],
|
| 94 |
+
loss=loss,
|
| 95 |
+
)
|
| 96 |
+
trainer.train()
|
| 97 |
+
|
| 98 |
+
test_evaluator = evaluation.EmbeddingSimilarityEvaluator(
|
| 99 |
+
stsb_test["sentence1"],
|
| 100 |
+
stsb_test["sentence2"],
|
| 101 |
+
[score / 5 for score in stsb_test["score"]],
|
| 102 |
+
main_similarity=evaluation.SimilarityFunction.COSINE,
|
| 103 |
+
name="sts-test",
|
| 104 |
+
)
|
| 105 |
+
results = test_evaluator(model)
|
| 106 |
+
print(results)
|