tomaarsen HF Staff commited on
Commit
ea34095
·
verified ·
1 Parent(s): 4077b53

Upload folder using huggingface_hub (#1)

Browse files

- Upload folder using huggingface_hub (b88e970c85d6847008f773138b04f6561eac0ef9)

1_Pooling/config.json CHANGED
@@ -1,9 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false
 
9
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,132 +1,132 @@
1
- ---
2
- library_name: sentence-transformers
3
- pipeline_tag: sentence-similarity
4
- tags:
5
- - sentence-transformers
6
- - feature-extraction
7
- - sentence-similarity
8
- - transformers
9
-
10
- ---
11
-
12
- # tomaarsen/mpnet-base-nli-matryoshka
13
-
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
-
16
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/5O_UxEzuU_RHkOIAZyV_K.png)
17
-
18
- <!--- Describe your model here -->
19
-
20
- ## Usage (Sentence-Transformers)
21
-
22
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
23
-
24
- ```
25
- pip install -U sentence-transformers
26
- ```
27
-
28
- Then you can use the model like this:
29
-
30
- ```python
31
- from sentence_transformers import SentenceTransformer
32
- sentences = ["This is an example sentence", "Each sentence is converted"]
33
-
34
- model = SentenceTransformer('tomaarsen/mpnet-base-nli-matryoshka')
35
- embeddings = model.encode(sentences)
36
- print(embeddings)
37
- ```
38
-
39
-
40
-
41
- ## Usage (HuggingFace Transformers)
42
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
43
-
44
- ```python
45
- from transformers import AutoTokenizer, AutoModel
46
- import torch
47
-
48
-
49
- #Mean Pooling - Take attention mask into account for correct averaging
50
- def mean_pooling(model_output, attention_mask):
51
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
52
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
53
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
54
-
55
-
56
- # Sentences we want sentence embeddings for
57
- sentences = ['This is an example sentence', 'Each sentence is converted']
58
-
59
- # Load model from HuggingFace Hub
60
- tokenizer = AutoTokenizer.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
61
- model = AutoModel.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
62
-
63
- # Tokenize sentences
64
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
65
-
66
- # Compute token embeddings
67
- with torch.no_grad():
68
- model_output = model(**encoded_input)
69
-
70
- # Perform pooling. In this case, mean pooling.
71
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
72
-
73
- print("Sentence embeddings:")
74
- print(sentence_embeddings)
75
- ```
76
-
77
-
78
-
79
- ## Evaluation Results
80
-
81
- <!--- Describe how your model was evaluated -->
82
-
83
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/mpnet-base-nli-matryoshka)
84
-
85
-
86
- ## Training
87
- The model was trained with the parameters:
88
-
89
- **DataLoader**:
90
-
91
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
92
- ```
93
- {'batch_size': 64}
94
- ```
95
-
96
- **Loss**:
97
-
98
- `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
99
- ```
100
- {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1]}
101
- ```
102
-
103
- Parameters of the fit()-Method:
104
- ```
105
- {
106
- "epochs": 1,
107
- "evaluation_steps": 880,
108
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
109
- "max_grad_norm": 1,
110
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
111
- "optimizer_params": {
112
- "lr": 2e-05
113
- },
114
- "scheduler": "WarmupLinear",
115
- "steps_per_epoch": null,
116
- "warmup_steps": 881,
117
- "weight_decay": 0.01
118
- }
119
- ```
120
-
121
-
122
- ## Full Model Architecture
123
- ```
124
- SentenceTransformer(
125
- (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
126
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
- )
128
- ```
129
-
130
- ## Citing & Authors
131
-
132
  <!--- Describe where people can find more information -->
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
+ ---
11
+
12
+ # tomaarsen/mpnet-base-nli-matryoshka
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/5O_UxEzuU_RHkOIAZyV_K.png)
17
+
18
+ <!--- Describe your model here -->
19
+
20
+ ## Usage (Sentence-Transformers)
21
+
22
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
23
+
24
+ ```
25
+ pip install -U sentence-transformers
26
+ ```
27
+
28
+ Then you can use the model like this:
29
+
30
+ ```python
31
+ from sentence_transformers import SentenceTransformer
32
+ sentences = ["This is an example sentence", "Each sentence is converted"]
33
+
34
+ model = SentenceTransformer('tomaarsen/mpnet-base-nli-matryoshka')
35
+ embeddings = model.encode(sentences)
36
+ print(embeddings)
37
+ ```
38
+
39
+
40
+
41
+ ## Usage (HuggingFace Transformers)
42
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
43
+
44
+ ```python
45
+ from transformers import AutoTokenizer, AutoModel
46
+ import torch
47
+
48
+
49
+ #Mean Pooling - Take attention mask into account for correct averaging
50
+ def mean_pooling(model_output, attention_mask):
51
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
52
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
53
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
54
+
55
+
56
+ # Sentences we want sentence embeddings for
57
+ sentences = ['This is an example sentence', 'Each sentence is converted']
58
+
59
+ # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
61
+ model = AutoModel.from_pretrained('tomaarsen/mpnet-base-nli-matryoshka')
62
+
63
+ # Tokenize sentences
64
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
65
+
66
+ # Compute token embeddings
67
+ with torch.no_grad():
68
+ model_output = model(**encoded_input)
69
+
70
+ # Perform pooling. In this case, mean pooling.
71
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
72
+
73
+ print("Sentence embeddings:")
74
+ print(sentence_embeddings)
75
+ ```
76
+
77
+
78
+
79
+ ## Evaluation Results
80
+
81
+ <!--- Describe how your model was evaluated -->
82
+
83
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/mpnet-base-nli-matryoshka)
84
+
85
+
86
+ ## Training
87
+ The model was trained with the parameters:
88
+
89
+ **DataLoader**:
90
+
91
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
92
+ ```
93
+ {'batch_size': 64}
94
+ ```
95
+
96
+ **Loss**:
97
+
98
+ `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
99
+ ```
100
+ {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1]}
101
+ ```
102
+
103
+ Parameters of the fit()-Method:
104
+ ```
105
+ {
106
+ "epochs": 1,
107
+ "evaluation_steps": 880,
108
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
109
+ "max_grad_norm": 1,
110
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
111
+ "optimizer_params": {
112
+ "lr": 2e-05
113
+ },
114
+ "scheduler": "WarmupLinear",
115
+ "steps_per_epoch": null,
116
+ "warmup_steps": 881,
117
+ "weight_decay": 0.01
118
+ }
119
+ ```
120
+
121
+
122
+ ## Full Model Architecture
123
+ ```
124
+ SentenceTransformer(
125
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
126
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
+ )
128
+ ```
129
+
130
+ ## Citing & Authors
131
+
132
  <!--- Describe where people can find more information -->
config.json CHANGED
@@ -1,24 +1,24 @@
1
- {
2
- "_name_or_path": "checkpoints\\checkpoint-4000",
3
- "architectures": [
4
- "MPNetModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "eos_token_id": 2,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 3072,
14
- "layer_norm_eps": 1e-05,
15
- "max_position_embeddings": 514,
16
- "model_type": "mpnet",
17
- "num_attention_heads": 12,
18
- "num_hidden_layers": 12,
19
- "pad_token_id": 1,
20
- "relative_attention_num_buckets": 32,
21
- "torch_dtype": "float32",
22
- "transformers_version": "4.37.0",
23
- "vocab_size": 30527
24
- }
 
1
+ {
2
+ "_name_or_path": "tomaarsen/mpnet-base-nli-matryoshka",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json CHANGED
@@ -1,7 +1,14 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "2.4.0.dev0",
4
- "transformers": "4.37.0",
5
- "pytorch": "2.1.0+cu121"
6
- }
 
 
 
 
 
 
 
7
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.2.0.dev0",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
  }
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b49fade0836ccee996d5d6d852b3dad2fa109c4f5acf6e0bd23c8942cfd04962
3
+ size 435826548
onnx/model_O1.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d9af3ce50837e4c95e28d5776447aa8395bc786aa0dfbe78da0f98892e7ebb
3
+ size 435730180
onnx/model_O2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23a6f298911b538040b5e33069aa0b962bad1d68847256ed487abb0e9b1d99a9
3
+ size 435666661
onnx/model_O3.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa144a73c5f88793a2be46ba5f8bc70113b0f8a45ffe4ca3ed09d3b7faf8b89b
3
+ size 435666516
onnx/model_O4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef3c2f730057d66bfe0e28bcb2fbbc058bee750210dd14df2e0ce36acd7c85af
3
+ size 217894954
onnx/model_qint8_arm64.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386a28ff93e7654261f6a2d0447b1dea85d7ed9fbf045455eb93299574bf0c3c
3
+ size 110124379
onnx/model_qint8_avx512.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386a28ff93e7654261f6a2d0447b1dea85d7ed9fbf045455eb93299574bf0c3c
3
+ size 110124379
onnx/model_qint8_avx512_vnni.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386a28ff93e7654261f6a2d0447b1dea85d7ed9fbf045455eb93299574bf0c3c
3
+ size 110124379
onnx/model_quint8_avx2.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b3d1856e42acb3858abc015dfd8117b176a9eec1daaca7767401176e6d93c3
3
+ size 110124376
openvino/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f300d61dd5bd201ff72137ed98eb076505ccf5aa0f5c13072069ff4b48b74a
3
+ size 435583684
openvino/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 384,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,51 +1,51 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "[UNK]",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json CHANGED
@@ -1,72 +1,73 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<s>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<pad>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "</s>",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "104": {
36
- "content": "[UNK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- },
43
- "30526": {
44
- "content": "<mask>",
45
- "lstrip": true,
46
- "normalized": false,
47
- "rstrip": false,
48
- "single_word": false,
49
- "special": true
50
- }
51
- },
52
- "bos_token": "<s>",
53
- "clean_up_tokenization_spaces": true,
54
- "cls_token": "<s>",
55
- "do_lower_case": true,
56
- "eos_token": "</s>",
57
- "mask_token": "<mask>",
58
- "max_length": 384,
59
- "model_max_length": 384,
60
- "pad_to_multiple_of": null,
61
- "pad_token": "<pad>",
62
- "pad_token_type_id": 0,
63
- "padding_side": "right",
64
- "sep_token": "</s>",
65
- "stride": 0,
66
- "strip_accents": null,
67
- "tokenize_chinese_chars": true,
68
- "tokenizer_class": "MPNetTokenizer",
69
- "truncation_side": "right",
70
- "truncation_strategy": "longest_first",
71
- "unk_token": "[UNK]"
72
- }
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 384,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }