Update README.md
Browse files
README.md
CHANGED
|
@@ -48,9 +48,17 @@ intxwo = IntxWeightOnlyConfig(weight_dtype=torch.int8, granularity=PerAxis(0))
|
|
| 48 |
qconfig_dict = {
|
| 49 |
# highest priority
|
| 50 |
"model.decoder.layers.3.self_attn.q_proj": int4wo,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"model.decoder.layers.*.self_attn.q_proj": float8dyn,
|
| 52 |
"model.decoder.layers.*.self_attn.k_proj": float8dyn,
|
| 53 |
-
"model.decoder.layers.*.self_attn.v_proj":
|
|
|
|
|
|
|
|
|
|
| 54 |
"_default": intxwo,
|
| 55 |
}
|
| 56 |
quant_config = ModuleFqnToConfig(qconfig_dict)
|
|
@@ -65,19 +73,23 @@ print("quantized model:", quantized_model)
|
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 66 |
for i in range(12):
|
| 67 |
if i == 3:
|
| 68 |
-
print("type:", quantized_model.model.decoder.layers[i].self_attn.q_proj.weight)
|
| 69 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Int4TilePackedTo4dTensor)
|
|
|
|
|
|
|
| 70 |
else:
|
| 71 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Float8Tensor)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.out_proj.weight, IntxUnpackedToInt8Tensor)
|
| 75 |
|
| 76 |
-
# Push to hub
|
| 77 |
MODEL_NAME = model_id.split("/")[-1]
|
| 78 |
save_to = f"torchao-testing/{MODEL_NAME}-ModuleFqnToConfig-v1-regex-0.14.0.dev"
|
| 79 |
quantized_model.push_to_hub(save_to, safe_serialization=False)
|
| 80 |
tokenizer.push_to_hub(save_to)
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# Manual Testing
|
| 83 |
prompt = "What are we having for dinner?"
|
|
@@ -143,10 +155,12 @@ print("quantized model:", quantized_model)
|
|
| 143 |
for i in range(12):
|
| 144 |
if i == 3:
|
| 145 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Int4TilePackedTo4dTensor)
|
|
|
|
|
|
|
| 146 |
else:
|
| 147 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Float8Tensor)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.out_proj.weight, IntxUnpackedToInt8Tensor)
|
| 151 |
|
| 152 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -154,10 +168,6 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
| 154 |
input_ids = tokenizer(input_text, return_tensors="pt").to(device)
|
| 155 |
|
| 156 |
output = quantized_model.generate(**input_ids, max_new_tokens=max_new_tokens)
|
| 157 |
-
|
| 158 |
-
"What are we having for dinner?\n\nJessica: (smiling)",
|
| 159 |
-
"What are we having for dinner?\n\nJess: (smiling) I",
|
| 160 |
-
]
|
| 161 |
-
# self.assertTrue(tokenizer.decode(output[0], skip_special_tokens=True) in EXPECTED_OUTPUT)
|
| 162 |
|
| 163 |
```
|
|
|
|
| 48 |
qconfig_dict = {
|
| 49 |
# highest priority
|
| 50 |
"model.decoder.layers.3.self_attn.q_proj": int4wo,
|
| 51 |
+
"model.decoder.layers.3.self_attn.k_proj": int4wo,
|
| 52 |
+
"model.decoder.layers.3.self_attn.v_proj": int4wo,
|
| 53 |
+
# vllm
|
| 54 |
+
"model.decoder.layers.3.self_attn.qkv_proj": int4wo,
|
| 55 |
+
|
| 56 |
"model.decoder.layers.*.self_attn.q_proj": float8dyn,
|
| 57 |
"model.decoder.layers.*.self_attn.k_proj": float8dyn,
|
| 58 |
+
"model.decoder.layers.*.self_attn.v_proj": float8dyn,
|
| 59 |
+
# vllm
|
| 60 |
+
"model.decoder.layers.*.self_attn.qkv_proj": float8dyn,
|
| 61 |
+
|
| 62 |
"_default": intxwo,
|
| 63 |
}
|
| 64 |
quant_config = ModuleFqnToConfig(qconfig_dict)
|
|
|
|
| 73 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 74 |
for i in range(12):
|
| 75 |
if i == 3:
|
|
|
|
| 76 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Int4TilePackedTo4dTensor)
|
| 77 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.k_proj.weight, Int4TilePackedTo4dTensor)
|
| 78 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.v_proj.weight, Int4TilePackedTo4dTensor)
|
| 79 |
else:
|
| 80 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Float8Tensor)
|
| 81 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.k_proj.weight, Float8Tensor)
|
| 82 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.v_proj.weight, Float8Tensor)
|
| 83 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.out_proj.weight, IntxUnpackedToInt8Tensor)
|
| 84 |
|
| 85 |
+
# # # Push to hub
|
| 86 |
MODEL_NAME = model_id.split("/")[-1]
|
| 87 |
save_to = f"torchao-testing/{MODEL_NAME}-ModuleFqnToConfig-v1-regex-0.14.0.dev"
|
| 88 |
quantized_model.push_to_hub(save_to, safe_serialization=False)
|
| 89 |
tokenizer.push_to_hub(save_to)
|
| 90 |
+
# quantized_model.save_pretrained(save_to, safe_serialization=False)
|
| 91 |
+
# tokenizer.save_pretrained(save_to)
|
| 92 |
+
|
| 93 |
|
| 94 |
# Manual Testing
|
| 95 |
prompt = "What are we having for dinner?"
|
|
|
|
| 155 |
for i in range(12):
|
| 156 |
if i == 3:
|
| 157 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Int4TilePackedTo4dTensor)
|
| 158 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.k_proj.weight, Int4TilePackedTo4dTensor)
|
| 159 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.v_proj.weight, Int4TilePackedTo4dTensor)
|
| 160 |
else:
|
| 161 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.q_proj.weight, Float8Tensor)
|
| 162 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.k_proj.weight, Float8Tensor)
|
| 163 |
+
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.v_proj.weight, Float8Tensor)
|
| 164 |
assert isinstance(quantized_model.model.decoder.layers[i].self_attn.out_proj.weight, IntxUnpackedToInt8Tensor)
|
| 165 |
|
| 166 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 168 |
input_ids = tokenizer(input_text, return_tensors="pt").to(device)
|
| 169 |
|
| 170 |
output = quantized_model.generate(**input_ids, max_new_tokens=max_new_tokens)
|
| 171 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
```
|