Update README.md
Browse files
README.md
CHANGED
|
@@ -1,125 +1,125 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
tags:
|
| 6 |
-
- sentence-embedding
|
| 7 |
-
- sentence-similarity
|
| 8 |
-
- transformers
|
| 9 |
-
- feature-extraction
|
| 10 |
-
pipeline_tag: sentence-similarity
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
# MiniCPM-2B-Text-Embedding-cft
|
| 14 |
-
|
| 15 |
-
## Description
|
| 16 |
-
|
| 17 |
-
This is a fine-tuned version of [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets.
|
| 18 |
-
|
| 19 |
-
## Base Model
|
| 20 |
-
|
| 21 |
-
[MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16)
|
| 22 |
-
|
| 23 |
-
## Usage
|
| 24 |
-
|
| 25 |
-
1. Clone MiniCPM-2B-dpo-bf16 repository
|
| 26 |
-
|
| 27 |
-
```bash
|
| 28 |
-
git clone https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16
|
| 29 |
-
```
|
| 30 |
-
|
| 31 |
-
2. Change a tokenizer setting in `tokenizer_config.json`
|
| 32 |
-
|
| 33 |
-
```json
|
| 34 |
-
"add_eos_token": true
|
| 35 |
-
```
|
| 36 |
-
|
| 37 |
-
3. Use the model
|
| 38 |
-
|
| 39 |
-
```python
|
| 40 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 41 |
-
import torch
|
| 42 |
-
import numpy as np
|
| 43 |
-
|
| 44 |
-
class MiniCPMSentenceEmbedding:
|
| 45 |
-
def __init__(self, model_path='openbmb/MiniCPM-2B-dpo-bf16', adapter_path=None):
|
| 46 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 47 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_path,
|
| 48 |
-
torch_dtype=torch.bfloat16,
|
| 49 |
-
device_map='cuda',
|
| 50 |
-
trust_remote_code=True)
|
| 51 |
-
if adapter_path != None:
|
| 52 |
-
# Load fine-tuned LoRA
|
| 53 |
-
self.model.load_adapter(adapter_path)
|
| 54 |
-
|
| 55 |
-
def get_last_hidden_state(self, text):
|
| 56 |
-
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
|
| 59 |
-
return out.squeeze().float().cpu().numpy()
|
| 60 |
-
|
| 61 |
-
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
|
| 62 |
-
"""
|
| 63 |
-
Returns a list of embeddings for the given sentences.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
sentences: List of sentences to encode
|
| 67 |
-
|
| 68 |
-
Returns:
|
| 69 |
-
List of embeddings for the given sentences
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
out = []
|
| 73 |
-
|
| 74 |
-
for s in sentences:
|
| 75 |
-
out.append(self.get_last_hidden_state(s))
|
| 76 |
-
|
| 77 |
-
return out
|
| 78 |
-
|
| 79 |
-
minicpm_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/MiniCPM-2B-Text-Embedding-cft')
|
| 80 |
-
|
| 81 |
-
example_sentences = ["I don't like apples", "I like apples"]
|
| 82 |
-
|
| 83 |
-
encoded_sentences = minicpm_sentence_embedding.encode(example_sentences)
|
| 84 |
-
|
| 85 |
-
print(encoded_sentences)
|
| 86 |
-
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
## Training Details
|
| 90 |
-
|
| 91 |
-
| **Training Details** | **Value** |
|
| 92 |
-
|-------------------------|-------------------|
|
| 93 |
-
| Loss | InfoNCE |
|
| 94 |
-
| Batch Size | 60 |
|
| 95 |
-
| InfoNCE Temperature | 0.05 |
|
| 96 |
-
| Learning Rate | 5e-05 |
|
| 97 |
-
| Warmup Steps | 100 |
|
| 98 |
-
| Learning Rate Scheduler | CosineAnnealingLR |
|
| 99 |
-
| LoRA Rank | 8 |
|
| 100 |
-
| LoRA Alpha | 32 |
|
| 101 |
-
| LoRA Dropout | 0.1 |
|
| 102 |
-
| Training Precision | bf16 |
|
| 103 |
-
| Max Epoch | 1 |
|
| 104 |
-
| GPU | RTX3090 |
|
| 105 |
-
| Num GPUs | 4 |
|
| 106 |
-
|
| 107 |
-
## Training Scripts
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
## Checkpoints
|
| 112 |
-
|
| 113 |
-
We provide checkpoints every 500 training steps which can be found [here](https://huggingface.co/trapoom555/MiniCPM-2B-Text-Embedding-cft-checkpoints).
|
| 114 |
-
|
| 115 |
-
## Evaluation Results
|
| 116 |
-
|
| 117 |
-
**_(coming soon...)_**
|
| 118 |
-
|
| 119 |
-
## Contributors
|
| 120 |
-
|
| 121 |
-
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
|
| 122 |
-
|
| 123 |
-
## Foot Notes
|
| 124 |
-
|
| 125 |
This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-embedding
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- transformers
|
| 9 |
+
- feature-extraction
|
| 10 |
+
pipeline_tag: sentence-similarity
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# MiniCPM-2B-Text-Embedding-cft
|
| 14 |
+
|
| 15 |
+
## Description
|
| 16 |
+
|
| 17 |
+
This is a fine-tuned version of [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets.
|
| 18 |
+
|
| 19 |
+
## Base Model
|
| 20 |
+
|
| 21 |
+
[MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16)
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
1. Clone MiniCPM-2B-dpo-bf16 repository
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
git clone https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
2. Change a tokenizer setting in `tokenizer_config.json`
|
| 32 |
+
|
| 33 |
+
```json
|
| 34 |
+
"add_eos_token": true
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
3. Use the model
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 41 |
+
import torch
|
| 42 |
+
import numpy as np
|
| 43 |
+
|
| 44 |
+
class MiniCPMSentenceEmbedding:
|
| 45 |
+
def __init__(self, model_path='openbmb/MiniCPM-2B-dpo-bf16', adapter_path=None):
|
| 46 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 47 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path,
|
| 48 |
+
torch_dtype=torch.bfloat16,
|
| 49 |
+
device_map='cuda',
|
| 50 |
+
trust_remote_code=True)
|
| 51 |
+
if adapter_path != None:
|
| 52 |
+
# Load fine-tuned LoRA
|
| 53 |
+
self.model.load_adapter(adapter_path)
|
| 54 |
+
|
| 55 |
+
def get_last_hidden_state(self, text):
|
| 56 |
+
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
|
| 59 |
+
return out.squeeze().float().cpu().numpy()
|
| 60 |
+
|
| 61 |
+
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
|
| 62 |
+
"""
|
| 63 |
+
Returns a list of embeddings for the given sentences.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
sentences: List of sentences to encode
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
List of embeddings for the given sentences
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
out = []
|
| 73 |
+
|
| 74 |
+
for s in sentences:
|
| 75 |
+
out.append(self.get_last_hidden_state(s))
|
| 76 |
+
|
| 77 |
+
return out
|
| 78 |
+
|
| 79 |
+
minicpm_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/MiniCPM-2B-Text-Embedding-cft')
|
| 80 |
+
|
| 81 |
+
example_sentences = ["I don't like apples", "I like apples"]
|
| 82 |
+
|
| 83 |
+
encoded_sentences = minicpm_sentence_embedding.encode(example_sentences)
|
| 84 |
+
|
| 85 |
+
print(encoded_sentences)
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Training Details
|
| 90 |
+
|
| 91 |
+
| **Training Details** | **Value** |
|
| 92 |
+
|-------------------------|-------------------|
|
| 93 |
+
| Loss | InfoNCE |
|
| 94 |
+
| Batch Size | 60 |
|
| 95 |
+
| InfoNCE Temperature | 0.05 |
|
| 96 |
+
| Learning Rate | 5e-05 |
|
| 97 |
+
| Warmup Steps | 100 |
|
| 98 |
+
| Learning Rate Scheduler | CosineAnnealingLR |
|
| 99 |
+
| LoRA Rank | 8 |
|
| 100 |
+
| LoRA Alpha | 32 |
|
| 101 |
+
| LoRA Dropout | 0.1 |
|
| 102 |
+
| Training Precision | bf16 |
|
| 103 |
+
| Max Epoch | 1 |
|
| 104 |
+
| GPU | RTX3090 |
|
| 105 |
+
| Num GPUs | 4 |
|
| 106 |
+
|
| 107 |
+
## Training Scripts
|
| 108 |
+
|
| 109 |
+
The training script for this model is written in this [Github repository](https://github.com/trapoom555/Language-Model-STS-CFT/tree/main).
|
| 110 |
+
|
| 111 |
+
## Checkpoints
|
| 112 |
+
|
| 113 |
+
We provide checkpoints every 500 training steps which can be found [here](https://huggingface.co/trapoom555/MiniCPM-2B-Text-Embedding-cft-checkpoints).
|
| 114 |
+
|
| 115 |
+
## Evaluation Results
|
| 116 |
+
|
| 117 |
+
**_(coming soon...)_**
|
| 118 |
+
|
| 119 |
+
## Contributors
|
| 120 |
+
|
| 121 |
+
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
|
| 122 |
+
|
| 123 |
+
## Foot Notes
|
| 124 |
+
|
| 125 |
This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.
|