usef310 commited on
Commit
bfcfd4a
·
verified ·
1 Parent(s): 063d1b5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - sentiment-analysis
5
+ - flan-t5
6
+ - text-classification
7
+ license: apache-2.0
8
+ datasets:
9
+ - imdb
10
+ ---
11
+
12
+ # FLAN-T5 Small - Sentiment Analysis
13
+
14
+ Fine-tuned version of `google/flan-t5-small` for sentiment analysis on IMDB reviews.
15
+
16
+ ## Model Details
17
+ - **Base Model:** google/flan-t5-small
18
+ - **Task:** Binary sentiment classification (positive/negative)
19
+ - **Dataset:** IMDB movie reviews (300 training samples)
20
+ - **Accuracy:** 85.00%
21
+
22
+ ## Usage
23
+
24
+ ```python
25
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
26
+
27
+ tokenizer = AutoTokenizer.from_pretrained("usef310/flan-t5-small-sentiment")
28
+ model = AutoModelForSeq2SeqLM.from_pretrained("usef310/flan-t5-small-sentiment")
29
+
30
+ text = "This movie was amazing!"
31
+ inputs = tokenizer("sentiment: " + text, return_tensors="pt")
32
+ outputs = model.generate(**inputs)
33
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+ print(prediction) # Output: positive or negative
35
+ ```
36
+
37
+ ## Training Details
38
+ - Epochs: 3
39
+ - Batch size: 4 (with gradient accumulation)
40
+ - Learning rate: 5e-5
41
+ - Optimizer: AdamW