Add custom handler for Inference Endpoint deployment
Browse files- handler.py +93 -0
- requirements.txt +6 -0
handler.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# handler.py
|
| 2 |
+
from typing import Dict, Any, List
|
| 3 |
+
import torch
|
| 4 |
+
import PIL.Image
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import base64
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
# Configure logging for debugging purposes
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
|
| 13 |
+
class EndpointHandler:
|
| 14 |
+
def __init__(self, path=""):
|
| 15 |
+
logging.info("Initializing EndpointHandler for Moondream2")
|
| 16 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
logging.info(f"Using device: {self.device}")
|
| 18 |
+
|
| 19 |
+
# Load the model with trust_remote_code enabled.
|
| 20 |
+
# 'path' points to the location of the model files inside the container.
|
| 21 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
path,
|
| 23 |
+
trust_remote_code=True,
|
| 24 |
+
torch_dtype=torch.float16,
|
| 25 |
+
device_map=self.device
|
| 26 |
+
)
|
| 27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
| 28 |
+
|
| 29 |
+
# Ensure the model is moved to the device
|
| 30 |
+
self.model.to(self.device)
|
| 31 |
+
self.model.eval()
|
| 32 |
+
|
| 33 |
+
logging.info("Moondream2 model loaded successfully.")
|
| 34 |
+
|
| 35 |
+
def preprocess_image(self, encoded_image: str) -> PIL.Image.Image:
|
| 36 |
+
"""Decode and preprocess the base64 encoded image."""
|
| 37 |
+
try:
|
| 38 |
+
image_data = base64.b64decode(encoded_image)
|
| 39 |
+
return PIL.Image.open(BytesIO(image_data)).convert("RGB")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
logging.error(f"Error decoding image: {e}")
|
| 42 |
+
raise ValueError(f"Failed to decode image data: {e}")
|
| 43 |
+
|
| 44 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 45 |
+
"""
|
| 46 |
+
Handles the API call. The `data` argument is a dictionary containing the payload.
|
| 47 |
+
Expects a JSON payload like:
|
| 48 |
+
{
|
| 49 |
+
"inputs": {
|
| 50 |
+
"prompt": "What's in this picture?",
|
| 51 |
+
"image": "base64_encoded_image_string"
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
"""
|
| 55 |
+
logging.info("Received request payload")
|
| 56 |
+
inputs = data.get("inputs", {})
|
| 57 |
+
prompt = inputs.get("prompt", "")
|
| 58 |
+
encoded_image = inputs.get("image", "")
|
| 59 |
+
|
| 60 |
+
if not prompt or not encoded_image:
|
| 61 |
+
raise ValueError("Prompt and base64 encoded image must be provided in the 'inputs' field.")
|
| 62 |
+
|
| 63 |
+
image = self.preprocess_image(encoded_image)
|
| 64 |
+
|
| 65 |
+
# Process the image and prompt
|
| 66 |
+
enc_image = self.model.encode_image(image)
|
| 67 |
+
|
| 68 |
+
# Create the conversation history for inference
|
| 69 |
+
chat_history = f"Question: {prompt}\n\nAnswer:"
|
| 70 |
+
|
| 71 |
+
logging.info(f"Running inference with prompt: {prompt}")
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
output_tokens = self.model.generate(
|
| 74 |
+
enc_image,
|
| 75 |
+
self.tokenizer,
|
| 76 |
+
chat_history,
|
| 77 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 78 |
+
# Add other generation parameters here if needed
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Decode the generated tokens
|
| 82 |
+
generated_text = self.tokenizer.batch_decode(output_tokens, skip_special_tokens=True)[0]
|
| 83 |
+
logging.info(f"Inference complete. Generated text: {generated_text}")
|
| 84 |
+
|
| 85 |
+
# Post-process the output to isolate the answer
|
| 86 |
+
try:
|
| 87 |
+
# The model output includes the prompt, so we need to extract only the answer part.
|
| 88 |
+
answer_start_tag = "\n\nAnswer:"
|
| 89 |
+
generated_answer = generated_text.split(answer_start_tag)[-1].strip()
|
| 90 |
+
except IndexError:
|
| 91 |
+
generated_answer = generated_text # Fallback if splitting fails
|
| 92 |
+
|
| 93 |
+
return [{"generated_text": generated_answer}]
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements.txt
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
accelerate
|
| 5 |
+
timm
|
| 6 |
+
einops
|