File size: 10,534 Bytes
d4ef36e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#!/usr/bin/env python3
"""
Qwen3-Omni GGUF格式使用範例
這個腳本展示如何使用GGUF格式的Qwen3-Omni模型進行各種任務,
包括Ollama API、llama-cpp-python直接調用等方法。
"""
import json
import time
import requests
import subprocess
from pathlib import Path
from typing import Dict, List, Optional
try:
from llama_cpp import Llama
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
print("⚠️ llama-cpp-python not installed. Install with: pip install llama-cpp-python")
class QwenGGUFRunner:
"""Qwen GGUF格式運行器"""
def __init__(self, model_path: str = "qwen3_omni_quantized.gguf"):
self.model_path = model_path
self.llm = None
def load_with_llama_cpp(self, **kwargs):
"""使用llama-cpp-python載入模型"""
if not LLAMA_CPP_AVAILABLE:
raise ImportError("llama-cpp-python not available")
default_params = {
'n_gpu_layers': 35, # GPU加速層數
'n_ctx': 4096, # 上下文長度
'n_batch': 512, # 批次大小
'verbose': False, # 靜音模式
'n_threads': 8, # CPU線程數
}
default_params.update(kwargs)
print(f"🚀 Loading GGUF model: {self.model_path}")
start_time = time.time()
self.llm = Llama(model_path=self.model_path, **default_params)
load_time = time.time() - start_time
print(f"✅ Model loaded in {load_time:.2f}s")
return self.llm
def generate_with_llama_cpp(self, prompt: str, **kwargs) -> str:
"""使用llama-cpp-python生成文本"""
if not self.llm:
raise ValueError("Model not loaded. Call load_with_llama_cpp() first.")
default_params = {
'max_tokens': 256,
'temperature': 0.7,
'top_p': 0.8,
'top_k': 50,
'repeat_penalty': 1.1,
'stop': ["</s>", "<|endoftext|>"]
}
default_params.update(kwargs)
print(f"💭 Generating response...")
start_time = time.time()
response = self.llm(prompt, **default_params)
gen_time = time.time() - start_time
tokens = len(response['choices'][0]['text'].split())
speed = tokens / gen_time if gen_time > 0 else 0
print(f"⚡ Generated {tokens} tokens in {gen_time:.2f}s ({speed:.1f} tok/s)")
return response['choices'][0]['text']
class OllamaAPI:
"""Ollama API 接口"""
def __init__(self, base_url: str = "http://localhost:11434"):
self.base_url = base_url
self.model_name = "qwen3-omni-quantized"
def check_connection(self) -> bool:
"""檢查Ollama連接"""
try:
response = requests.get(f"{self.base_url}/api/tags", timeout=5)
return response.status_code == 200
except:
return False
def is_model_available(self) -> bool:
"""檢查模型是否可用"""
try:
response = requests.get(f"{self.base_url}/api/tags")
models = response.json().get("models", [])
return any(model["name"] == self.model_name for model in models)
except:
return False
def generate(self, prompt: str, **kwargs) -> str:
"""使用Ollama API生成文本"""
if not self.check_connection():
raise ConnectionError("Cannot connect to Ollama API")
if not self.is_model_available():
raise ValueError(f"Model {self.model_name} not found in Ollama")
payload = {
"model": self.model_name,
"prompt": prompt,
"stream": False,
"options": {
"temperature": kwargs.get("temperature", 0.7),
"top_p": kwargs.get("top_p", 0.8),
"top_k": kwargs.get("top_k", 50),
"repeat_penalty": kwargs.get("repeat_penalty", 1.1),
"num_predict": kwargs.get("max_tokens", 256),
}
}
print(f"💭 Sending request to Ollama...")
start_time = time.time()
response = requests.post(
f"{self.base_url}/api/generate",
json=payload,
timeout=60
)
if response.status_code != 200:
raise RuntimeError(f"Ollama API error: {response.text}")
result = response.json()
gen_time = time.time() - start_time
# 估算tokens和速度
output_text = result["response"]
tokens = len(output_text.split())
speed = tokens / gen_time if gen_time > 0 else 0
print(f"⚡ Generated {tokens} tokens in {gen_time:.2f}s ({speed:.1f} tok/s)")
return output_text
def run_examples():
"""運行示例代碼"""
examples = [
{
"name": "🌟 創意寫作",
"prompt": "請寫一個關於AI和人類合作探索宇宙的短故事,要有科幻感和哲理思考。",
"params": {"temperature": 0.8, "max_tokens": 400}
},
{
"name": "💻 代碼生成",
"prompt": "請用Python寫一個快速排序算法,包含詳細註解和時間複雜度分析。",
"params": {"temperature": 0.3, "max_tokens": 500}
},
{
"name": "🧮 數學推理",
"prompt": "一個圓的半徑是5cm,請計算其面積和周長,並解釋計算過程。",
"params": {"temperature": 0.2, "max_tokens": 300}
},
{
"name": "🌐 多語言翻譯",
"prompt": "Please translate this English text to Chinese: 'Artificial Intelligence is revolutionizing the way we interact with technology, making it more intuitive and human-friendly.'",
"params": {"temperature": 0.3, "max_tokens": 200}
},
{
"name": "🤔 邏輯推理",
"prompt": "如果所有的A都是B,所有的B都是C,而某個X是A,那麼X是什麼?請解釋邏輯推理過程。",
"params": {"temperature": 0.1, "max_tokens": 250}
}
]
# 檢查Ollama可用性
ollama = OllamaAPI()
ollama_available = ollama.check_connection() and ollama.is_model_available()
# 檢查GGUF文件可用性
gguf_available = LLAMA_CPP_AVAILABLE and Path("qwen3_omni_quantized.gguf").exists()
print("=" * 80)
print("🔥 Qwen3-Omni GGUF格式使用範例")
print("=" * 80)
print(f"💾 Ollama API 可用: {'✅' if ollama_available else '❌'}")
print(f"📁 GGUF文件可用: {'✅' if gguf_available else '❌'}")
print()
# 如果都不可用,提供設置指南
if not ollama_available and not gguf_available:
print("⚠️ 請先設置Ollama或下載GGUF文件:")
print()
print("🚀 Ollama 設置:")
print(" 1. ollama create qwen3-omni-quantized -f Qwen3OmniQuantized.modelfile")
print(" 2. ollama serve")
print()
print("📁 GGUF文件下載:")
print(" huggingface-cli download vito95311/Qwen3-Omni-30B-A3B-Thinking-GGUF-INT8FP16 qwen3_omni_quantized.gguf")
return
# 優先使用Ollama,因為更簡單
if ollama_available:
print("🎯 使用Ollama API進行推理")
runner_type = "ollama"
api = ollama
else:
print("🎯 使用llama-cpp-python進行推理")
runner_type = "llama_cpp"
runner = QwenGGUFRunner()
runner.load_with_llama_cpp()
print("=" * 80)
# 運行示例
for i, example in enumerate(examples, 1):
print(f"\n📝 示例 {i}: {example['name']}")
print(f"💬 提示: {example['prompt'][:100]}...")
print("-" * 40)
try:
if runner_type == "ollama":
response = api.generate(example['prompt'], **example['params'])
else:
response = runner.generate_with_llama_cpp(example['prompt'], **example['params'])
print(f"🤖 回應: {response.strip()}")
except Exception as e:
print(f"❌ 錯誤: {str(e)}")
print("-" * 40)
# 暫停一下避免過載
time.sleep(1)
def benchmark_performance():
"""性能基準測試"""
print("\n🏆 性能基準測試")
print("=" * 50)
test_prompts = [
"解釋什麼是機器學習",
"寫一個Python函數來計算斐波那契數列",
"描述量子計算的基本原理",
"What are the benefits of renewable energy?",
"如何優化深度學習模型的性能?"
]
ollama = OllamaAPI()
if ollama.check_connection() and ollama.is_model_available():
print("📊 測試Ollama API性能...")
total_time = 0
total_tokens = 0
for i, prompt in enumerate(test_prompts, 1):
print(f" Test {i}/5: ", end="", flush=True)
start_time = time.time()
response = ollama.generate(prompt, max_tokens=100, temperature=0.7)
end_time = time.time()
test_time = end_time - start_time
tokens = len(response.split())
speed = tokens / test_time if test_time > 0 else 0
total_time += test_time
total_tokens += tokens
print(f"{speed:.1f} tok/s")
avg_speed = total_tokens / total_time if total_time > 0 else 0
print(f"\n📈 平均性能: {avg_speed:.1f} tokens/秒")
print(f"⏱️ 總時間: {total_time:.2f}秒")
print(f"📝 總tokens: {total_tokens}")
else:
print("⚠️ Ollama不可用,跳過性能測試")
def main():
"""主函數"""
print("🔥 Qwen3-Omni GGUF 使用範例")
print("這個腳本展示如何使用GGUF格式的模型進行各種AI任務")
# 運行使用範例
run_examples()
# 性能測試
user_input = input("\n🤔 是否運行性能基準測試? (y/n): ")
if user_input.lower() in ['y', 'yes']:
benchmark_performance()
print("\n✨ 示例運行完成!")
print("💡 更多使用方法請參考 README.md")
if __name__ == "__main__":
main()
|