--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - llama-factory - full - generated_from_trainer metrics: - accuracy model-index: - name: Llama-3.1-8B-SFT-envbench_weave_2500 results: [] --- # Llama-3.1-8B-SFT-envbench_weave_2500 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the envbench_weave_2500 dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Accuracy: 0.8937 - Num Input Tokens Seen: 93186816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0a0+df5bbc09d1.nv24.12 - Datasets 3.6.0 - Tokenizers 0.21.1