weekcircle commited on
Commit
13f1f42
·
1 Parent(s): 4308c96

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -34
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: cc-by-nc-4.0
3
- base_model: weekcircle/wav2vec2-large-mms-1b-korean-colab
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # wav2vec2-large-mms-1b-korean-colab_v2
17
 
18
- This model is a fine-tuned version of [weekcircle/wav2vec2-large-mms-1b-korean-colab](https://huggingface.co/weekcircle/wav2vec2-large-mms-1b-korean-colab) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.1086
21
- - Wer: 0.2620
22
 
23
  ## Model description
24
 
@@ -37,47 +37,35 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - learning_rate: 0.001
41
  - train_batch_size: 8
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
  - lr_scheduler_warmup_steps: 100
47
- - num_epochs: 5
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Wer |
52
  |:-------------:|:-----:|:----:|:---------------:|:------:|
53
- | 7.4685 | 0.18 | 100 | 0.2959 | 0.5194 |
54
- | 0.2803 | 0.36 | 200 | 0.1893 | 0.3906 |
55
- | 0.2519 | 0.53 | 300 | 0.1935 | 0.3878 |
56
- | 0.242 | 0.71 | 400 | 0.1732 | 0.3789 |
57
- | 0.2402 | 0.89 | 500 | 0.1626 | 0.3585 |
58
- | 0.2176 | 1.07 | 600 | 0.1512 | 0.3382 |
59
- | 0.2036 | 1.24 | 700 | 0.1619 | 0.3644 |
60
- | 0.21 | 1.42 | 800 | 0.1434 | 0.3348 |
61
- | 0.2035 | 1.6 | 900 | 0.1477 | 0.3357 |
62
- | 0.2091 | 1.78 | 1000 | 0.1376 | 0.3064 |
63
- | 0.1876 | 1.95 | 1100 | 0.1383 | 0.3194 |
64
- | 0.177 | 2.13 | 1200 | 0.1367 | 0.3076 |
65
- | 0.174 | 2.31 | 1300 | 0.1347 | 0.3086 |
66
- | 0.1816 | 2.49 | 1400 | 0.1317 | 0.3138 |
67
- | 0.1885 | 2.66 | 1500 | 0.1252 | 0.3009 |
68
- | 0.1703 | 2.84 | 1600 | 0.1268 | 0.3006 |
69
- | 0.1751 | 3.02 | 1700 | 0.1245 | 0.3030 |
70
- | 0.1635 | 3.2 | 1800 | 0.1225 | 0.2895 |
71
- | 0.1582 | 3.37 | 1900 | 0.1188 | 0.2864 |
72
- | 0.1522 | 3.55 | 2000 | 0.1164 | 0.2777 |
73
- | 0.1579 | 3.73 | 2100 | 0.1171 | 0.2839 |
74
- | 0.1489 | 3.91 | 2200 | 0.1175 | 0.2700 |
75
- | 0.1465 | 4.09 | 2300 | 0.1124 | 0.2682 |
76
- | 0.1339 | 4.26 | 2400 | 0.1153 | 0.2759 |
77
- | 0.1427 | 4.44 | 2500 | 0.1125 | 0.2694 |
78
- | 0.1466 | 4.62 | 2600 | 0.1105 | 0.2639 |
79
- | 0.1421 | 4.8 | 2700 | 0.1101 | 0.2608 |
80
- | 0.1466 | 4.97 | 2800 | 0.1086 | 0.2620 |
81
 
82
 
83
  ### Framework versions
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ base_model: facebook/mms-1b-l1107
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # wav2vec2-large-mms-1b-korean-colab_v2
17
 
18
+ This model is a fine-tuned version of [facebook/mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.1650
21
+ - Wer: 0.3776
22
 
23
  ## Model description
24
 
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
+ - learning_rate: 0.005
41
  - train_batch_size: 8
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
  - lr_scheduler_warmup_steps: 100
47
+ - num_epochs: 3
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Wer |
52
  |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 4.6667 | 0.18 | 100 | 0.8024 | 0.8379 |
54
+ | 0.5754 | 0.36 | 200 | 0.3907 | 0.6495 |
55
+ | 0.4658 | 0.53 | 300 | 0.3620 | 0.6224 |
56
+ | 0.4321 | 0.71 | 400 | 0.3184 | 0.5842 |
57
+ | 0.399 | 0.89 | 500 | 0.2930 | 0.5120 |
58
+ | 0.3538 | 1.07 | 600 | 0.2446 | 0.4698 |
59
+ | 0.3379 | 1.24 | 700 | 0.2341 | 0.4692 |
60
+ | 0.3333 | 1.42 | 800 | 0.2121 | 0.4488 |
61
+ | 0.31 | 1.6 | 900 | 0.2054 | 0.4297 |
62
+ | 0.3049 | 1.78 | 1000 | 0.1958 | 0.4180 |
63
+ | 0.2885 | 1.95 | 1100 | 0.1885 | 0.4143 |
64
+ | 0.2632 | 2.13 | 1200 | 0.1865 | 0.4094 |
65
+ | 0.2592 | 2.31 | 1300 | 0.1774 | 0.3853 |
66
+ | 0.2591 | 2.49 | 1400 | 0.1700 | 0.3924 |
67
+ | 0.2605 | 2.66 | 1500 | 0.1701 | 0.3789 |
68
+ | 0.2361 | 2.84 | 1600 | 0.1650 | 0.3776 |
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
 
71
  ### Framework versions