Update README.md
Browse files
README.md
CHANGED
|
@@ -1,160 +1,164 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
--
|
| 79 |
-
|
| 80 |
-
--
|
| 81 |
-
--
|
| 82 |
-
--
|
| 83 |
-
|
| 84 |
-
--
|
| 85 |
-
--
|
| 86 |
-
--
|
| 87 |
-
--
|
| 88 |
-
--
|
| 89 |
-
--
|
| 90 |
-
--
|
| 91 |
-
--
|
| 92 |
-
--
|
| 93 |
-
--
|
| 94 |
-
--
|
| 95 |
-
--
|
| 96 |
-
--
|
| 97 |
-
--
|
| 98 |
-
--
|
| 99 |
-
--
|
| 100 |
-
--
|
| 101 |
-
--
|
| 102 |
-
--
|
| 103 |
-
--
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
```
|
| 115 |
-
|
| 116 |
-
```
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
| 131 |
-
|
| 132 |
-
-
|
| 133 |
-
|
| 134 |
-
TimeZero
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
}
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: video-text-to-text
|
| 3 |
+
library_name: transformers
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
|
| 7 |
+
|
| 8 |
+
<div style='display:flex; gap: 0.25rem; '>
|
| 9 |
+
<a href='./TimeZero_TechReport.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
|
| 10 |
+
<a href='https://huggingface.co/wwwyyy/TimeZero-Charades-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Checkpoint-blue'></a>
|
| 11 |
+
</div>
|
| 12 |
+
|
| 13 |
+
### Updates
|
| 14 |
+
|
| 15 |
+
- 2025-03-17: TimeZero initial release! Code and evaluation scripts are now available.
|
| 16 |
+
- 2025-03-17: TimeZero achieves SOTA performance on Charades-STA!
|
| 17 |
+
|
| 18 |
+
### Overview
|
| 19 |
+
|
| 20 |
+
TimeZero is a reasoning-guided Large Vision-Language Model (LVLM) for Temporal Video Grounding (TVG). It excels at identifying temporal segments within videos that correspond to a given natural language query. TimeZero achieves this entirely through a reinforcement learning approach that allows the model to reason about video-language relationships *during inference*.
|
| 21 |
+
|
| 22 |
+
Key Features:
|
| 23 |
+
|
| 24 |
+
* **Reinforcement Learning Training:** TimeZero is trained *entirely* using reinforcement learning, enhancing its ability to generate accurate temporal boundaries.
|
| 25 |
+
* **Test-Time Reasoning:** The model exhibits emergent reasoning capabilities during inference, generating a chain of thought to justify its segment predictions.
|
| 26 |
+
* **SOTA Performance:** TimeZero sets a new SOTA on the Charades-STA benchmark.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
This README provides an overview of TimeZero, including setup instructions, the training process, and evaluation guidelines.
|
| 30 |
+
|
| 31 |
+
**Example:**
|
| 32 |
+
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
**Training Visualization:**
|
| 37 |
+
|
| 38 |
+

|
| 39 |
+
|
| 40 |
+
## Setup
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
conda create -n timezero python=3.11
|
| 44 |
+
conda env create -f environment.yml
|
| 45 |
+
conda activate timezero
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Training
|
| 49 |
+
|
| 50 |
+
TimeZero training involves the following steps:
|
| 51 |
+
|
| 52 |
+
1. **Data Preprocessing:**
|
| 53 |
+
|
| 54 |
+
Download the dataset [Charades-STA](https://github.com/jiyanggao/TALL#charades-sta-anno-download), [ActivityNet](https://cs.stanford.edu/people/ranjaykrishna/densevid/)
|
| 55 |
+
|
| 56 |
+
Before training, you need to preprocess the video data.
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
bash preprocess_video.sh
|
| 60 |
+
```
|
| 61 |
+
Specify the path to the Charades-STA dataset (video files, annotations, etc.).
|
| 62 |
+
|
| 63 |
+
2. **GRPO Training:**
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
cd scripts
|
| 67 |
+
bash run_grpo_video.sh
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
**`run_grpo_video.sh`**
|
| 71 |
+
|
| 72 |
+
```bash
|
| 73 |
+
#!/bin/bash
|
| 74 |
+
|
| 75 |
+
export DEBUG_MODE="false" # Set to "true" for verbose logging during training.
|
| 76 |
+
export LOG_PATH="./debug_log.txt"
|
| 77 |
+
|
| 78 |
+
torchrun --nproc_per_node="4" \
|
| 79 |
+
--nnodes="1" \
|
| 80 |
+
--node_rank="0" \
|
| 81 |
+
--master_addr="127.0.0.1" \
|
| 82 |
+
--master_port="12361" \
|
| 83 |
+
src/open_r1/grpo_video.py \
|
| 84 |
+
--deepspeed scripts/zero3_offload.json \
|
| 85 |
+
--output_dir $OUTDIR \
|
| 86 |
+
--model_name_or_path mllm/Qwen2.5-VL-7B-Instruct \
|
| 87 |
+
--preprocessed_data_path ./Charades_preprocessed_data_maxpix_3584 \
|
| 88 |
+
--train_data_path ./Charades/charades_annotation/train.json \
|
| 89 |
+
--eval_data_path ./Charades/charades_annotation/val.json \
|
| 90 |
+
--video_folder ./Charades/Charades_v1 \
|
| 91 |
+
--dataset_name xxx \
|
| 92 |
+
--max_prompt_length 8192 \
|
| 93 |
+
--max_completion_length 1024 \
|
| 94 |
+
--num_generations 8 \
|
| 95 |
+
--per_device_train_batch_size 1 \
|
| 96 |
+
--gradient_accumulation_steps 2 \
|
| 97 |
+
--logging_steps 1 \
|
| 98 |
+
--bf16 \
|
| 99 |
+
--torch_dtype bfloat16 \
|
| 100 |
+
--data_seed 42 \
|
| 101 |
+
--gradient_checkpointing true \
|
| 102 |
+
--attn_implementation flash_attention_2 \
|
| 103 |
+
--num_train_epochs 2 \
|
| 104 |
+
--run_name $WANDB_NAME \
|
| 105 |
+
--report_to wandb \
|
| 106 |
+
--save_steps 50 \
|
| 107 |
+
--save_only_model true
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
## Evaluation
|
| 111 |
+
|
| 112 |
+
After training, evaluate your model's performance:
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
bash scripts/evaluate.sh # Use evaluate.sh for evaluation.
|
| 116 |
+
```
|
| 117 |
+
**`evaluate.sh`**
|
| 118 |
+
```
|
| 119 |
+
python evaluate.py --model_base <path_to_your_trained_model> --dataset <charades or activitynet>
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
> The evaluation script (`evaluate.py`) needs to be implemented to load your model, process the test data, and calculate the relevant metrics (R1@0.3, R1@0.5, R1@0.7, etc.).
|
| 123 |
+
|
| 124 |
+
## Results
|
| 125 |
+
|
| 126 |
+
- **Charades-STA (Finetuned)**
|
| 127 |
+
|
| 128 |
+
TimeZero outperforms previous state-of-the-art methods by a large margin.
|
| 129 |
+
|
| 130 |
+
| Method | Type | R1@0.3 | R1@0.5 | R1@0.7 |
|
| 131 |
+
| --------------------- | ---- | ------ | ------ | ------ |
|
| 132 |
+
| EaTR (VLP sota) | VLP | - | 68.4 | 44.9 |
|
| 133 |
+
| TimeSuite (LVLM sota) | SFT | 79.4 | 67.1 | 43.0 |
|
| 134 |
+
| TimeZero (ours) | RL | 83.3 | 72.5 | 47.9 |
|
| 135 |
+
|
| 136 |
+
- **ActivityNet (Finetuned)**
|
| 137 |
+
|
| 138 |
+
TimeZero surpasses previous state-of-the-art LVLMs.
|
| 139 |
+
|
| 140 |
+
| Method | Type | R1@0.3 | R1@0.5 | R1@0.7 |
|
| 141 |
+
| ----------------- | ---- | ------ | ------ | ------ |
|
| 142 |
+
| EaTR (VLP sota) | VLP | - | 58.18 | 37.64 |
|
| 143 |
+
| TRACE (LVLM sota) | SFT | 54.0 | 37.7 | 24.0 |
|
| 144 |
+
| TimeZero (ours) | RL | 68.6 | 47.3 | 26.9 |
|
| 145 |
+
|
| 146 |
+
## Acknowledgements
|
| 147 |
+
|
| 148 |
+
We thank the authors of the following projects for their contributions:
|
| 149 |
+
|
| 150 |
+
* [TRACE](https://github.com/gyxxyg/TRACE)
|
| 151 |
+
* [R1-V](https://github.com/Deep-Agent/R1-V)
|
| 152 |
+
* [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL)
|
| 153 |
+
|
| 154 |
+
## Citation
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
```bibtex
|
| 158 |
+
@article{wang2025timezero,
|
| 159 |
+
title={TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM},
|
| 160 |
+
author={Wang, Ye and Xu, Boshen and Yue, Zihao and Xiao, Zihan and Wang, Ziheng and Zhang, Liang and Yang, Dingyi and Wang, Wenxuan and Jin, Qin},
|
| 161 |
+
booktitle={arxiv},
|
| 162 |
+
year={2025}
|
| 163 |
+
}
|
| 164 |
+
```
|