microsoft_DialoGPT-small_databricks-dolly-15k_sft v1.0
Model Description
Hello
Base Model: microsoft/DialoGPT-small
Developed by: Mathhead
Training Details
Dataset
- Training Data: {training_dataset}
- Dataset Size: {dataset_size}
- Training Duration: {training_duration}
- Hardware: {hardware}
Hyperparameters
- max_length: 512
- num_epochs: 1
- batch_size: 4
- eval_batch_size: 4
- gradient_accumulation_steps: 4
- warmup_steps: 100
- learning_rate: 5e-05
- weight_decay: 0.01
- logging_steps: 10
- eval_steps: 500
- save_steps: 1000
- save_total_limit: 3
- report_to: ['wandb']
Evaluation Metrics
- eval_loss: 8.534549713134766
- eval_runtime: 12.9653
- eval_samples_per_second: 7.713
- eval_steps_per_second: 1.928
- epoch: 1.0
Test Dataset: {test_dataset}
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("wxkkxw/microsoft_DialoGPT-small_databricks-dolly-15k_sft")
model = AutoModelForCausalLM.from_pretrained("wxkkxw/microsoft_DialoGPT-small_databricks-dolly-15k_sft")
# Generate text
prompt = "{example_prompt}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens={max_new_tokens},
temperature={temperature},
top_p={top_p}
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Limitations and Biases
{limitations_list}
Citation
@misc{{{citation_key},
author = {{{citation_authors}}},
title = {{{citation_title}}},
year = {{{citation_year}}},
publisher = {{Hugging Face}},
url = {{https://huggingface.co/wxkkxw/microsoft_DialoGPT-small_databricks-dolly-15k_sft}}
}}
Model Card Authors
Mathhead
Model Card Contact
For questions and feedback, please contact: {contact_email}
This model card was generated from template on 2025-11-15.
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for wxkkxw/microsoft_DialoGPT-small_databricks-dolly-15k_sft
Base model
microsoft/DialoGPT-small