xboy-352 commited on
Commit
6a12cd6
·
verified ·
1 Parent(s): ced9c06

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 255.62 +/- 20.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 277.16 +/- 20.55
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x11131fd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x11131fd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x11131fe20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x11131feb0>", "_build": "<function ActorCriticPolicy._build at 0x11131ff40>", "forward": "<function ActorCriticPolicy.forward at 0x11132c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x11132c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x11132c160>", "_predict": "<function ActorCriticPolicy._predict at 0x11132c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x11132c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x11132c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x11132c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x111321f40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 802816, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1763916036621200000, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": "./ppo_lunarlander_tb/", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCWQzYVZcOMAWyUTTABjAF0lEdAZHhYHxBmgHV9lChoBkdAbZJg+hXbNGgHTQIBaAhHQGR56ij+Jgt1fZQoaAZHQHKMWGM4tHxoB00pAWgIR0BkfO2sq8UVdX2UKGgGR0BxShlwtJ4CaAdL8WgIR0BkfQGhVU++dX2UKGgGR0BxvbTWoWHlaAdNNgFoCEdAZH66z3RG+nV9lChoBkdAcJYaC+UQkGgHTTkBaAhHQGR/lrl/6O51fZQoaAZHQHAKQFgUlAxoB00QAWgIR0BkgVQ9A5aNdX2UKGgGR0BwzpfICEHuaAdNEAFoCEdAZIIKBNEgGXV9lChoBkdAcN2jRD1GsmgHTRYBaAhHQGSMgdGRV6x1fZQoaAZHQHMZKqXF98ZoB01QAWgIR0BkjOKKpDNRdX2UKGgGR0Bu3DcZccENaAdL72gIR0Bkjc3wTdtVdX2UKGgGR0Bwo2j9GZuyaAdL7GgIR0Bkj0v4/NaAdX2UKGgGR0BxFICKaXruaAdNAwFoCEdAZJDOXVsk6nV9lChoBkdAcl/77Kq4pmgHTVUBaAhHQGSRMxXXAdp1fZQoaAZHQHCXqW9lEqloB0v5aAhHQGSS5mI0qH51fZQoaAZHQG566K+BYmtoB00fAWgIR0Bkk3642CNCdX2UKGgGR0BsKJc9nscAaAdNFwFoCEdAZJXOTJQtSXV9lChoBkdAcJH/SH/LkmgHTSoBaAhHQGSW7gCOmzl1fZQoaAZHQHCa7yH2ys1oB00WAWgIR0Bkl2GsV+I/dX2UKGgGR0Bydrgl4TsZaAdNEAFoCEdAZJkJ0GNaQnV9lChoBkdAbylzND+irWgHTQcBaAhHQGSavYe1a4d1fZQoaAZHQHLvNR77bcpoB0vlaAhHQGScIsZpBX11fZQoaAZHQHDdvtpmEoRoB00jAWgIR0BknJj6N2kjdX2UKGgGR0Bu0HRRdhRZaAdL/mgIR0BkneTRplBhdX2UKGgGR0BwaV6Ww/xEaAdL9WgIR0BkoBuAI6bOdX2UKGgGR0Bwvu2jO9nLaAdL+2gIR0BkogE6kqMFdX2UKGgGR0Bx6u4e9zwMaAdNEAFoCEdAZKJVurIYFnV9lChoBkdAQ1xhOP/7zmgHS8poCEdAZKL9v0h/zHV9lChoBkdAbfqulGgBcWgHTQkBaAhHQGSj5lnRLK51fZQoaAZHQHArFzhgmZ5oB00AAWgIR0BkpeYfGMn7dX2UKGgGR0ByFoc1fmcOaAdNKwFoCEdAZKcK4QSSNnV9lChoBkdAbox8stkFwGgHTQQBaAhHQGSnKRMewLV1fZQoaAZHQHJQlJcxCY1oB0v8aAhHQGSocIqslsx1fZQoaAZHQG3HSB06o2poB0v/aAhHQGSp/7Jnxrl1fZQoaAZHQHDedeUpuuRoB0v7aAhHQGSqxEWqLjx1fZQoaAZHQHHXqraM72doB00ZAWgIR0Bkqxw++ueSdX2UKGgGR0BwDUI4VARkaAdL/GgIR0Bkq5pL26CldX2UKGgGR0Bt9pNoJzDGaAdL/2gIR0BkrZ11W8yvdX2UKGgGR0BuhEZLqUu+aAdL8GgIR0Bkrj/jsD4hdX2UKGgGR0BwL0lRgqmTaAdNDgFoCEdAZK8OyVv/BHV9lChoBkdAcCwJJXhfjWgHTRsBaAhHQGS5xpUPxx11fZQoaAZHQHAlVajesPtoB00PAWgIR0BkuuxptaZAdX2UKGgGR0BwBjcVQAMlaAdNJAFoCEdAZLxrP+n623V9lChoBkdAcpjYKYzBRGgHTSUBaAhHQGS80RODaoN1fZQoaAZHQHBP/Hggow5oB00dAWgIR0BkvSFEiMYNdX2UKGgGR0BySkwWWQfZaAdNBAFoCEdAZL5v7WNFSnV9lChoBkdAcT+v2GqPwWgHS/xoCEdAZL7JkoWpInV9lChoBkdAcfFIDHOryWgHTQkBaAhHQGS/5WzWwvB1fZQoaAZHQHFSU8/2TPloB0vtaAhHQGTA2mxdIG11fZQoaAZHQHBUEN4JNTNoB00rAWgIR0BkxC1mapgkdX2UKGgGR0BwbrzAeq7zaAdNAAFoCEdAZMQ+6iCaqnV9lChoBkdAci1c5bQkX2gHTQkBaAhHQGTE05uIhyN1fZQoaAZHQHBPZDJEH+toB0vyaAhHQGTFuDzyz5Z1fZQoaAZHQHMdyZ4Oc2BoB004AWgIR0BkxmHBUJfIdX2UKGgGR0Bv8PW6K+BZaAdNCAFoCEdAZMao1k1/D3V9lChoBkdAca22kzoECGgHTQwBaAhHQGTH1rZamoB1fZQoaAZHQHCWvfCQ9zRoB00gAWgIR0BkyVPJq7AddX2UKGgGR0BHW4JE6T4daAdLyWgIR0Bkyk0rK/21dX2UKGgGR0BwiM5/9YOlaAdNAgFoCEdAZMtLaEi+tnV9lChoBkdAcgX76Hj6vmgHTR0BaAhHQGTMEDIRywR1fZQoaAZHQHHfr6guh9NoB00BAWgIR0BkzXLaEi+tdX2UKGgGR0Bw7/Xf642CaAdNJQFoCEdAZM3M5fdAPnV9lChoBkdAbys9AX2ugmgHTREBaAhHQGTOPhqCYkV1fZQoaAZHQHDkKbONYKZoB00IAWgIR0Bkz01jy4FzdX2UKGgGR0BygZYU34sVaAdNEwFoCEdAZNGjTKDCg3V9lChoBkdAcM087IT4+WgHS/doCEdAZNHvttygf3V9lChoBkdAbAJPWxyGSWgHTQEBaAhHQGTTVhsqJ/J1fZQoaAZHQHH4UxASnLtoB00ZAWgIR0Bk1WVAzHjqdX2UKGgGR0Btqf47A+INaAdNAQFoCEdAZNcO0b961XV9lChoBkdAbafX4CZF5WgHS/RoCEdAZNcrxRVIZ3V9lChoBkdAcwZzYmLLp2gHTREBaAhHQGTXS75Ec811fZQoaAZHQHIFOuFHrhRoB00hAWgIR0Bk5KXlbNbDdX2UKGgGR0BuLK2OQyRCaAdL72gIR0Bk5X/vOQhfdX2UKGgGR0BxO2JKraM8aAdNHQFoCEdAZObRP420iXV9lChoBkdAbv1t4zJp4GgHTQgBaAhHQGTn0waisXB1fZQoaAZHQHLp0bT+ee5oB00tAWgIR0Bk6v4M4LkTdX2UKGgGR0BxmVY0VJtjaAdNCwFoCEdAZOse6I3zc3V9lChoBkdActLCPZIxxmgHTRoBaAhHQGTrhUrCm/F1fZQoaAZHQHJOCN4qwyJoB00eAWgIR0Bk680m+j/NdX2UKGgGR0Bw5Vdld1MeaAdNJAFoCEdAZO6OpbUwz3V9lChoBkdAbvMVxCIDYGgHTQcBaAhHQGTvi6QNkOJ1fZQoaAZHQHA1t6X0Gu9oB00zAWgIR0Bk78WAPNFCdX2UKGgGR0BvvcCNjslcaAdNAQFoCEdAZPBKeTV2BHV9lChoBkdAcSpFn7Hhj2gHS/poCEdAZPM0gKWszXV9lChoBkdAch+p0wJw9GgHTQ0BaAhHQGTzSL61stV1fZQoaAZHQHBk0tRNyo5oB00VAWgIR0Bk86yjYZl4dX2UKGgGR0BvzTWGyon8aAdNOwFoCEdAZPW5p8F6iXV9lChoBkdAbsOWO6unuWgHS/loCEdAZPY6o2n89HV9lChoBkdAce4WrwOOKmgHS/loCEdAZPcoYvWYnnV9lChoBkdAcN7LYwqRU2gHTREBaAhHQGT4FfzBhx51fZQoaAZHQHGpjSPU8V5oB00EAWgIR0Bk+Eaya/h3dX2UKGgGR0BwXVoHs1KoaAdNAgFoCEdAZPsGC7K7qnV9lChoBkdAbprqREF4cGgHS/doCEdAZPsTdtVJc3V9lChoBkdAbdazRhMJyGgHTQ8BaAhHQGT7XYL9deJ1fZQoaAZHQHGCkcXFcY9oB00FAWgIR0Bk/T2nKnvVdX2UKGgGR0BzBrpMYdhiaAdL7WgIR0Bk/glQdjoZdX2UKGgGR0BxuV+9alk6aAdNDwFoCEdAZP4dV/+bVnV9lChoBkdAb+rHMlkYoGgHS/RoCEdAZP/ye7L+xXV9lChoBkdAbcWfGuLaVWgHTQ4BaAhHQGUAyKFZgXx1fZQoaAZHQG/DhDG96C1oB0v+aAhHQGUDw2/BWPt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgxRz/pmZmZmZmahZRSlGgxSwOFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-26.0.1-arm64-arm-64bit Darwin Kernel Version 25.0.0: Wed Sep 17 21:41:45 PDT 2025; root:xnu-12377.1.9~141/RELEASE_ARM64_T6000", "Python": "3.10.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.9.1", "GPU Enabled": "False", "Numpy": "2.2.6", "Cloudpickle": "3.1.2", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x11116cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x11116cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x11116cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x11116ce50>", "_build": "<function ActorCriticPolicy._build at 0x11116cee0>", "forward": "<function ActorCriticPolicy.forward at 0x11116cf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x11116d000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x11116d090>", "_predict": "<function ActorCriticPolicy._predict at 0x11116d120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x11116d1b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x11116d240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x11116d2d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x111162140>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 2408448, "_total_timesteps": 2405632.0, "_num_timesteps_at_start": 1605632, "seed": null, "action_noise": null, "start_time": 1763960659194797000, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz86NuLrHEMthZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": "./ppo_lunarlander_tb/", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0011705863573481246, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNY9yYG+saMAWyUS9OMAXSUR0BjzXDtPYWddX2UKGgGR0BzXWQA+6iCaAdL5WgIR0BjzMf7rLQpdX2UKGgGR0BxGGhoM8YAaAdLrGgIR0Bjzk+3Ytg8dX2UKGgGR0Bz8hhoduHfaAdNUAFoCEdAY86YtxuKoHV9lChoBkdAcZBsPJ7swGgHS9VoCEdAY83RUm2LHnV9lChoBkdAcOw9IPK+z2gHTRcBaAhHQGPQzUy57PZ1fZQoaAZHQDhlsTFl05loB0tcaAhHQGPSnRb8m8d1fZQoaAZHQHDsMz2vjfhoB0vLaAhHQGPSSlvZRKp1fZQoaAZHQHICY82aUiZoB0vLaAhHQGPSry1/lQx1fZQoaAZHQHDUAZXMhX9oB0uzaAhHQGPUIppeu3d1fZQoaAZHQG7mFyaNMoNoB0ufaAhHQGPTBRIjGDN1fZQoaAZHQHFatNJvo/1oB0vfaAhHQGPUcwYcebN1fZQoaAZHQHAZMo2GZeBoB0vNaAhHQGPUixeLNwB1fZQoaAZHQHAh+DnNgShoB0uoaAhHQGPWcHObAk91fZQoaAZHQHN4hesxO+JoB005AmgIR0Bj1zZcs189dX2UKGgGR0Bxe9RJmNBGaAdNIAFoCEdAY9epiI+GGnV9lChoBkdActfhB7eEZmgHS9hoCEdAY9fSH/Lkj3V9lChoBkdAc4reqrBCU2gHS+FoCEdAY9eLc9GI9HV9lChoBkdAcG1OYYzi0mgHS9loCEdAY9kKkVN5+3V9lChoBkdAcrws3Q2MsGgHS95oCEdAY9h6DXe3yHV9lChoBkdAcveOH31zyWgHS6NoCEdAY9pZamoBJnV9lChoBkdAcDzv+OwPiGgHS6BoCEdAY9oawUxmCnV9lChoBkdAcmkIXCTEBWgHS9JoCEdAY9qfwqiGnHV9lChoBkdAc18KKpDNQmgHS71oCEdAZBTgIhQm/nV9lChoBkdAcgxg7o0Q9WgHS+BoCEdAZBd1KXfIjnV9lChoBkdAcXWafjCHh2gHS7BoCEdAZBddQfp2U3V9lChoBkdAcAwGwiaAnWgHS+xoCEdAZBgll9SdfHV9lChoBkdAcfafrrxAjmgHS85oCEdAZBa1JDmbLHV9lChoBkdAbpBArQPZqWgHS6poCEdAZBf+bVjI73V9lChoBkdAcUUPsAvL5mgHS7loCEdAZBg+rU9ZBHV9lChoBkdAcp6zQ/oq1GgHTRMCaAhHQGQZ23jMmnh1fZQoaAZHQHG9+qm0mdBoB0vAaAhHQGQY8WsRxtJ1fZQoaAZHQHA0zAN5MURoB007AWgIR0BkGVpM6BAfdX2UKGgGR0BwWtpDeCTVaAdLt2gIR0BkGuPBBRhudX2UKGgGR0BwVp6IFeOXaAdLzmgIR0BkGRiI+GGmdX2UKGgGR0Byw7GtITXbaAdLz2gIR0BkGpdOZb6hdX2UKGgGR0By9qM2m52AaAdL0GgIR0BkGgNy5qdpdX2UKGgGR0ByVDVe8f3faAdLrWgIR0BkGp91EE1VdX2UKGgGR0BwrXNKRMewaAdLoGgIR0BkGu2b5M11dX2UKGgGR0BwfP8tPHktaAdL4WgIR0BkHADcM3IddX2UKGgGR0ByBWNfgJkYaAdLrWgIR0BkHaQ1aW5ZdX2UKGgGR0ByhIguAZsLaAdL02gIR0BkHs3bVSXMdX2UKGgGR0Bya1NYbKigaAdLxmgIR0BkHZR64UeudX2UKGgGR0Bwb9r/KhcraAdLrmgIR0BkHviT+vQodX2UKGgGR0BxA+otL+PzaAdLumgIR0BkIFv60pmVdX2UKGgGR0ByMeecx0uEaAdLx2gIR0BkIFawD/2kdX2UKGgGR0BGBJm/WUbDaAdLjGgIR0BkH9dRiw0PdX2UKGgGR0ByjRa/yoXLaAdL9WgIR0BkIQgq3EyddX2UKGgGR0Bv6sDp1RtQaAdLtGgIR0BkIHHLidaudX2UKGgGR0BxjeYnfEXMaAdLx2gIR0BkIfk/8l5XdX2UKGgGR0BzB8EGJN0vaAdL1GgIR0BkIQpjMFEBdX2UKGgGR0Bx22t3fQ8faAdL2WgIR0BkIxQUHpr2dX2UKGgGR0Bx+y2uxKQJaAdLuWgIR0BkJYakyk9EdX2UKGgGR0BwSJ1FH8TBaAdL7WgIR0BkJdXko4MndX2UKGgGR0Bw2XW3BpHqaAdNFAFoCEdAZCXKoybhFXV9lChoBkdAcOFEJjUd72gHS6JoCEdAZCe45Lh73XV9lChoBkdAcgc2uPmxMWgHS9poCEdAZCc5Jbt7bHV9lChoBkdAc6IE7W/ag2gHS+xoCEdAZCkf6GgzxnV9lChoBkdAb5Oq5sj3VWgHS91oCEdAZCjAQg9vCXV9lChoBkdAcOerLhaTwGgHS6poCEdAZCqA+6iCa3V9lChoBkdAc7ye3x4IKWgHS9loCEdAZCn+gDifhHV9lChoBkdAc5EIK+i8F2gHS9toCEdAZCmSGJvYOHV9lChoBkdAcPzz19ORDGgHS8hoCEdAZCn6Ww/xD3V9lChoBkdAc1k+0gKWs2gHS8ZoCEdAZCmnpjc2znV9lChoBkdAcQ9K3d9DyGgHS9ZoCEdAZCn9ETg2qHV9lChoBkdAcbaqj8DSxGgHS89oCEdAZCsGjbi6x3V9lChoBkdAcx4ZtelbeWgHTdQBaAhHQGQqt1ZDArR1fZQoaAZHQHKelsxfv4NoB00GAmgIR0BkLNYGMXJpdX2UKGgGR0BwLGIdlum8aAdLyGgIR0BkLaFqSHM2dX2UKGgGR0Bx5XE2pAD8aAdLsmgIR0BkLvzUZvUCdX2UKGgGR0BzYajSG8EnaAdLzmgIR0BkLicVgx8EdX2UKGgGR0BxCtwvQF9saAdL7GgIR0BkL1Frl/6PdX2UKGgGR0ByKGR6nivQaAdLsWgIR0BkLkmnfl6rdX2UKGgGR0Bvwe/Dcdo4aAdLtGgIR0BkMEJQcghbdX2UKGgGR0BxM22c8TzvaAdLpmgIR0BkMQmqo60ZdX2UKGgGR0By4TgNwzciaAdLqWgIR0BkMJ0p3HJcdX2UKGgGR0BxXP6Mzdk8aAdLxGgIR0BkMG7e2uxKdX2UKGgGR0ByonUYsNDuaAdLumgIR0BkMMDuBtk4dX2UKGgGR0ByRIQTVUdaaAdLyWgIR0BkMbDZUT+OdX2UKGgGR0ByWYGt6ol2aAdLxWgIR0BkMjEgntv5dX2UKGgGR0ByEZV7x/d7aAdL4WgIR0BkMlMVUModdX2UKGgGR0BxP1yjpLVXaAdLrmgIR0BkNF3Qla8pdX2UKGgGR0Bxsu0v4/NaaAdLnWgIR0BkNDT8YQ8PdX2UKGgGR0BxyeVrylN2aAdLq2gIR0BkNZRXOnl5dX2UKGgGR0BxyiYx+KCQaAdNJwFoCEdAZDXhrnDBM3V9lChoBkdAcEJdcB2fTWgHTTkBaAhHQGQ3wWFev6l1fZQoaAZHQHDJfsRg7YFoB0u6aAhHQGQ44vFm4Al1fZQoaAZHQHNLEvTPSlZoB0vSaAhHQGQ4D/dZaFF1fZQoaAZHQHPeZy+6Ae9oB0vBaAhHQGQ42FvhqCZ1fZQoaAZHQHNjV45cTrVoB0vjaAhHQGQ4BFuvUz91fZQoaAZHQHIpWQSzw+doB0vNaAhHQGQ5esPrfLt1fZQoaAZHQHKgDFyaNMpoB01EAWgIR0BkOmuLaVUudX2UKGgGR0BzbS9+PRzBaAdLwmgIR0BkOXwRXfZVdX2UKGgGR0B0ZGeYlY2baAdL8GgIR0BkOqy8jAzpdX2UKGgGR0ByHNhz/6wdaAdLvWgIR0BkOlUQ04zadX2UKGgGR0BxjLBAOavzaAdLtGgIR0BkPwC6pYLcdX2UKGgGR0Bwmy2WpqASaAdL0GgIR0BkPg5BC2MLdX2UKGgGR0BxmbxBmf5DaAdLvWgIR0BkPV8b70nPdX2UKGgGR0BxXKhxo7FLaAdL0GgIR0BkQFvMr3CbdX2UKGgGR0BvMRbOeJ53aAdLtWgIR0BkQKf8MuvmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1960, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.97, "ent_coef": 0.04, "vf_coef": 0.5, "max_grad_norm": 0.7, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlGgxRz/ZmZmZmZmahZRSlGgxSwOFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz86NuLrHEMthZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-26.0.1-arm64-arm-64bit Darwin Kernel Version 25.0.0: Wed Sep 17 21:41:45 PDT 2025; root:xnu-12377.1.9~141/RELEASE_ARM64_T6000", "Python": "3.10.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.9.1", "GPU Enabled": "False", "Numpy": "2.2.6", "Cloudpickle": "3.1.2", "Gymnasium": "0.28.1"}}
ppo-LunarLander-ft-3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:622208e44759ec86804e0873d5ac2f0a04a18f3f07eea21882604b57595dbdaa
3
+ size 148652
ppo-LunarLander-ft-3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-ft-3/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x11116cca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x11116cd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x11116cdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x11116ce50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x11116cee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x11116cf70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x11116d000>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x11116d090>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x11116d120>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x11116d1b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x11116d240>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x11116d2d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x111162140>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2408448,
25
+ "_total_timesteps": 2405632.0,
26
+ "_num_timesteps_at_start": 1605632,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1763960659194797000,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz86NuLrHEMthZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
33
+ },
34
+ "tensorboard_log": "./ppo_lunarlander_tb/",
35
+ "_last_obs": null,
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0011705863573481246,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNY9yYG+saMAWyUS9OMAXSUR0BjzXDtPYWddX2UKGgGR0BzXWQA+6iCaAdL5WgIR0BjzMf7rLQpdX2UKGgGR0BxGGhoM8YAaAdLrGgIR0Bjzk+3Ytg8dX2UKGgGR0Bz8hhoduHfaAdNUAFoCEdAY86YtxuKoHV9lChoBkdAcZBsPJ7swGgHS9VoCEdAY83RUm2LHnV9lChoBkdAcOw9IPK+z2gHTRcBaAhHQGPQzUy57PZ1fZQoaAZHQDhlsTFl05loB0tcaAhHQGPSnRb8m8d1fZQoaAZHQHDsMz2vjfhoB0vLaAhHQGPSSlvZRKp1fZQoaAZHQHICY82aUiZoB0vLaAhHQGPSry1/lQx1fZQoaAZHQHDUAZXMhX9oB0uzaAhHQGPUIppeu3d1fZQoaAZHQG7mFyaNMoNoB0ufaAhHQGPTBRIjGDN1fZQoaAZHQHFatNJvo/1oB0vfaAhHQGPUcwYcebN1fZQoaAZHQHAZMo2GZeBoB0vNaAhHQGPUixeLNwB1fZQoaAZHQHAh+DnNgShoB0uoaAhHQGPWcHObAk91fZQoaAZHQHN4hesxO+JoB005AmgIR0Bj1zZcs189dX2UKGgGR0Bxe9RJmNBGaAdNIAFoCEdAY9epiI+GGnV9lChoBkdActfhB7eEZmgHS9hoCEdAY9fSH/Lkj3V9lChoBkdAc4reqrBCU2gHS+FoCEdAY9eLc9GI9HV9lChoBkdAcG1OYYzi0mgHS9loCEdAY9kKkVN5+3V9lChoBkdAcrws3Q2MsGgHS95oCEdAY9h6DXe3yHV9lChoBkdAcveOH31zyWgHS6NoCEdAY9pZamoBJnV9lChoBkdAcDzv+OwPiGgHS6BoCEdAY9oawUxmCnV9lChoBkdAcmkIXCTEBWgHS9JoCEdAY9qfwqiGnHV9lChoBkdAc18KKpDNQmgHS71oCEdAZBTgIhQm/nV9lChoBkdAcgxg7o0Q9WgHS+BoCEdAZBd1KXfIjnV9lChoBkdAcXWafjCHh2gHS7BoCEdAZBddQfp2U3V9lChoBkdAcAwGwiaAnWgHS+xoCEdAZBgll9SdfHV9lChoBkdAcfafrrxAjmgHS85oCEdAZBa1JDmbLHV9lChoBkdAbpBArQPZqWgHS6poCEdAZBf+bVjI73V9lChoBkdAcUUPsAvL5mgHS7loCEdAZBg+rU9ZBHV9lChoBkdAcp6zQ/oq1GgHTRMCaAhHQGQZ23jMmnh1fZQoaAZHQHG9+qm0mdBoB0vAaAhHQGQY8WsRxtJ1fZQoaAZHQHA0zAN5MURoB007AWgIR0BkGVpM6BAfdX2UKGgGR0BwWtpDeCTVaAdLt2gIR0BkGuPBBRhudX2UKGgGR0BwVp6IFeOXaAdLzmgIR0BkGRiI+GGmdX2UKGgGR0Byw7GtITXbaAdLz2gIR0BkGpdOZb6hdX2UKGgGR0By9qM2m52AaAdL0GgIR0BkGgNy5qdpdX2UKGgGR0ByVDVe8f3faAdLrWgIR0BkGp91EE1VdX2UKGgGR0BwrXNKRMewaAdLoGgIR0BkGu2b5M11dX2UKGgGR0BwfP8tPHktaAdL4WgIR0BkHADcM3IddX2UKGgGR0ByBWNfgJkYaAdLrWgIR0BkHaQ1aW5ZdX2UKGgGR0ByhIguAZsLaAdL02gIR0BkHs3bVSXMdX2UKGgGR0Bya1NYbKigaAdLxmgIR0BkHZR64UeudX2UKGgGR0Bwb9r/KhcraAdLrmgIR0BkHviT+vQodX2UKGgGR0BxA+otL+PzaAdLumgIR0BkIFv60pmVdX2UKGgGR0ByMeecx0uEaAdLx2gIR0BkIFawD/2kdX2UKGgGR0BGBJm/WUbDaAdLjGgIR0BkH9dRiw0PdX2UKGgGR0ByjRa/yoXLaAdL9WgIR0BkIQgq3EyddX2UKGgGR0Bv6sDp1RtQaAdLtGgIR0BkIHHLidaudX2UKGgGR0BxjeYnfEXMaAdLx2gIR0BkIfk/8l5XdX2UKGgGR0BzB8EGJN0vaAdL1GgIR0BkIQpjMFEBdX2UKGgGR0Bx22t3fQ8faAdL2WgIR0BkIxQUHpr2dX2UKGgGR0Bx+y2uxKQJaAdLuWgIR0BkJYakyk9EdX2UKGgGR0BwSJ1FH8TBaAdL7WgIR0BkJdXko4MndX2UKGgGR0Bw2XW3BpHqaAdNFAFoCEdAZCXKoybhFXV9lChoBkdAcOFEJjUd72gHS6JoCEdAZCe45Lh73XV9lChoBkdAcgc2uPmxMWgHS9poCEdAZCc5Jbt7bHV9lChoBkdAc6IE7W/ag2gHS+xoCEdAZCkf6GgzxnV9lChoBkdAb5Oq5sj3VWgHS91oCEdAZCjAQg9vCXV9lChoBkdAcOerLhaTwGgHS6poCEdAZCqA+6iCa3V9lChoBkdAc7ye3x4IKWgHS9loCEdAZCn+gDifhHV9lChoBkdAc5EIK+i8F2gHS9toCEdAZCmSGJvYOHV9lChoBkdAcPzz19ORDGgHS8hoCEdAZCn6Ww/xD3V9lChoBkdAc1k+0gKWs2gHS8ZoCEdAZCmnpjc2znV9lChoBkdAcQ9K3d9DyGgHS9ZoCEdAZCn9ETg2qHV9lChoBkdAcbaqj8DSxGgHS89oCEdAZCsGjbi6x3V9lChoBkdAcx4ZtelbeWgHTdQBaAhHQGQqt1ZDArR1fZQoaAZHQHKelsxfv4NoB00GAmgIR0BkLNYGMXJpdX2UKGgGR0BwLGIdlum8aAdLyGgIR0BkLaFqSHM2dX2UKGgGR0Bx5XE2pAD8aAdLsmgIR0BkLvzUZvUCdX2UKGgGR0BzYajSG8EnaAdLzmgIR0BkLicVgx8EdX2UKGgGR0BxCtwvQF9saAdL7GgIR0BkL1Frl/6PdX2UKGgGR0ByKGR6nivQaAdLsWgIR0BkLkmnfl6rdX2UKGgGR0Bvwe/Dcdo4aAdLtGgIR0BkMEJQcghbdX2UKGgGR0BxM22c8TzvaAdLpmgIR0BkMQmqo60ZdX2UKGgGR0By4TgNwzciaAdLqWgIR0BkMJ0p3HJcdX2UKGgGR0BxXP6Mzdk8aAdLxGgIR0BkMG7e2uxKdX2UKGgGR0ByonUYsNDuaAdLumgIR0BkMMDuBtk4dX2UKGgGR0ByRIQTVUdaaAdLyWgIR0BkMbDZUT+OdX2UKGgGR0ByWYGt6ol2aAdLxWgIR0BkMjEgntv5dX2UKGgGR0ByEZV7x/d7aAdL4WgIR0BkMlMVUModdX2UKGgGR0BxP1yjpLVXaAdLrmgIR0BkNF3Qla8pdX2UKGgGR0Bxsu0v4/NaaAdLnWgIR0BkNDT8YQ8PdX2UKGgGR0BxyeVrylN2aAdLq2gIR0BkNZRXOnl5dX2UKGgGR0BxyiYx+KCQaAdNJwFoCEdAZDXhrnDBM3V9lChoBkdAcEJdcB2fTWgHTTkBaAhHQGQ3wWFev6l1fZQoaAZHQHDJfsRg7YFoB0u6aAhHQGQ44vFm4Al1fZQoaAZHQHNLEvTPSlZoB0vSaAhHQGQ4D/dZaFF1fZQoaAZHQHPeZy+6Ae9oB0vBaAhHQGQ42FvhqCZ1fZQoaAZHQHNjV45cTrVoB0vjaAhHQGQ4BFuvUz91fZQoaAZHQHIpWQSzw+doB0vNaAhHQGQ5esPrfLt1fZQoaAZHQHKgDFyaNMpoB01EAWgIR0BkOmuLaVUudX2UKGgGR0BzbS9+PRzBaAdLwmgIR0BkOXwRXfZVdX2UKGgGR0B0ZGeYlY2baAdL8GgIR0BkOqy8jAzpdX2UKGgGR0ByHNhz/6wdaAdLvWgIR0BkOlUQ04zadX2UKGgGR0BxjLBAOavzaAdLtGgIR0BkPwC6pYLcdX2UKGgGR0Bwmy2WpqASaAdL0GgIR0BkPg5BC2MLdX2UKGgGR0BxmbxBmf5DaAdLvWgIR0BkPV8b70nPdX2UKGgGR0BxXKhxo7FLaAdL0GgIR0BkQFvMr3CbdX2UKGgGR0BvMRbOeJ53aAdLtWgIR0BkQKf8MuvmdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1960,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.97,
83
+ "ent_coef": 0.04,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.7,
86
+ "batch_size": 128,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlGgxRz/ZmZmZmZmahZRSlGgxSwOFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfNTkwOTIvMTg0NTQzNDYxOS5weZSMB2xyX2Z1bmOUSzxDBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz86NuLrHEMthZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-ft-3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb67c025824e95ae7fde6408a384cc7d47d30558371a2490c30b3f09ee93a4b
3
+ size 88375
ppo-LunarLander-ft-3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b86e4c50c558b9a8f7b6167027633515fdf861774eba45051f824d0e1fbfa58
3
+ size 43967
ppo-LunarLander-ft-3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b6bbfc035aeac78f3ee425960893ff8bb7927d3cf3425470ac4b6c6ce280c5d
3
+ size 1261
ppo-LunarLander-ft-3/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-26.0.1-arm64-arm-64bit Darwin Kernel Version 25.0.0: Wed Sep 17 21:41:45 PDT 2025; root:xnu-12377.1.9~141/RELEASE_ARM64_T6000
2
+ - Python: 3.10.19
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.9.1
5
+ - GPU Enabled: False
6
+ - Numpy: 2.2.6
7
+ - Cloudpickle: 3.1.2
8
+ - Gymnasium: 0.28.1
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:87090f46097ec7d842a68bd5beaedebf265cebf1754649b1482d919964e69774
3
- size 147419
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e97db6040a95fda23a5464b54a6dc1a801921eabd02a33003ca50d00e1616a05
3
+ size 141498
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 255.61729859999997, "std_reward": 20.540850765313294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-11-23T23:45:45.695305"}
 
1
+ {"mean_reward": 277.1607874, "std_reward": 20.553201793132192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-11-24T13:51:54.313480"}