Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_best_lol.zip +3 -0
- ppo-LunarLander-v2_best_lol/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_best_lol/data +99 -0
- ppo-LunarLander-v2_best_lol/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_best_lol/policy.pth +3 -0
- ppo-LunarLander-v2_best_lol/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_best_lol/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 255.62 +/- 20.54
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x11131fd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x11131fd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x11131fe20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x11131feb0>", "_build": "<function ActorCriticPolicy._build at 0x11131ff40>", "forward": "<function ActorCriticPolicy.forward at 0x11132c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x11132c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x11132c160>", "_predict": "<function ActorCriticPolicy._predict at 0x11132c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x11132c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x11132c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x11132c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x111321f40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 802816, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1763916036621200000, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": "./ppo_lunarlander_tb/", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCWQzYVZcOMAWyUTTABjAF0lEdAZHhYHxBmgHV9lChoBkdAbZJg+hXbNGgHTQIBaAhHQGR56ij+Jgt1fZQoaAZHQHKMWGM4tHxoB00pAWgIR0BkfO2sq8UVdX2UKGgGR0BxShlwtJ4CaAdL8WgIR0BkfQGhVU++dX2UKGgGR0BxvbTWoWHlaAdNNgFoCEdAZH66z3RG+nV9lChoBkdAcJYaC+UQkGgHTTkBaAhHQGR/lrl/6O51fZQoaAZHQHAKQFgUlAxoB00QAWgIR0BkgVQ9A5aNdX2UKGgGR0BwzpfICEHuaAdNEAFoCEdAZIIKBNEgGXV9lChoBkdAcN2jRD1GsmgHTRYBaAhHQGSMgdGRV6x1fZQoaAZHQHMZKqXF98ZoB01QAWgIR0BkjOKKpDNRdX2UKGgGR0Bu3DcZccENaAdL72gIR0Bkjc3wTdtVdX2UKGgGR0Bwo2j9GZuyaAdL7GgIR0Bkj0v4/NaAdX2UKGgGR0BxFICKaXruaAdNAwFoCEdAZJDOXVsk6nV9lChoBkdAcl/77Kq4pmgHTVUBaAhHQGSRMxXXAdp1fZQoaAZHQHCXqW9lEqloB0v5aAhHQGSS5mI0qH51fZQoaAZHQG566K+BYmtoB00fAWgIR0Bkk3642CNCdX2UKGgGR0BsKJc9nscAaAdNFwFoCEdAZJXOTJQtSXV9lChoBkdAcJH/SH/LkmgHTSoBaAhHQGSW7gCOmzl1fZQoaAZHQHCa7yH2ys1oB00WAWgIR0Bkl2GsV+I/dX2UKGgGR0Bydrgl4TsZaAdNEAFoCEdAZJkJ0GNaQnV9lChoBkdAbylzND+irWgHTQcBaAhHQGSavYe1a4d1fZQoaAZHQHLvNR77bcpoB0vlaAhHQGScIsZpBX11fZQoaAZHQHDdvtpmEoRoB00jAWgIR0BknJj6N2kjdX2UKGgGR0Bu0HRRdhRZaAdL/mgIR0BkneTRplBhdX2UKGgGR0BwaV6Ww/xEaAdL9WgIR0BkoBuAI6bOdX2UKGgGR0Bwvu2jO9nLaAdL+2gIR0BkogE6kqMFdX2UKGgGR0Bx6u4e9zwMaAdNEAFoCEdAZKJVurIYFnV9lChoBkdAQ1xhOP/7zmgHS8poCEdAZKL9v0h/zHV9lChoBkdAbfqulGgBcWgHTQkBaAhHQGSj5lnRLK51fZQoaAZHQHArFzhgmZ5oB00AAWgIR0BkpeYfGMn7dX2UKGgGR0ByFoc1fmcOaAdNKwFoCEdAZKcK4QSSNnV9lChoBkdAbox8stkFwGgHTQQBaAhHQGSnKRMewLV1fZQoaAZHQHJQlJcxCY1oB0v8aAhHQGSocIqslsx1fZQoaAZHQG3HSB06o2poB0v/aAhHQGSp/7Jnxrl1fZQoaAZHQHDedeUpuuRoB0v7aAhHQGSqxEWqLjx1fZQoaAZHQHHXqraM72doB00ZAWgIR0Bkqxw++ueSdX2UKGgGR0BwDUI4VARkaAdL/GgIR0Bkq5pL26CldX2UKGgGR0Bt9pNoJzDGaAdL/2gIR0BkrZ11W8yvdX2UKGgGR0BuhEZLqUu+aAdL8GgIR0Bkrj/jsD4hdX2UKGgGR0BwL0lRgqmTaAdNDgFoCEdAZK8OyVv/BHV9lChoBkdAcCwJJXhfjWgHTRsBaAhHQGS5xpUPxx11fZQoaAZHQHAlVajesPtoB00PAWgIR0BkuuxptaZAdX2UKGgGR0BwBjcVQAMlaAdNJAFoCEdAZLxrP+n623V9lChoBkdAcpjYKYzBRGgHTSUBaAhHQGS80RODaoN1fZQoaAZHQHBP/Hggow5oB00dAWgIR0BkvSFEiMYNdX2UKGgGR0BySkwWWQfZaAdNBAFoCEdAZL5v7WNFSnV9lChoBkdAcT+v2GqPwWgHS/xoCEdAZL7JkoWpInV9lChoBkdAcfFIDHOryWgHTQkBaAhHQGS/5WzWwvB1fZQoaAZHQHFSU8/2TPloB0vtaAhHQGTA2mxdIG11fZQoaAZHQHBUEN4JNTNoB00rAWgIR0BkxC1mapgkdX2UKGgGR0BwbrzAeq7zaAdNAAFoCEdAZMQ+6iCaqnV9lChoBkdAci1c5bQkX2gHTQkBaAhHQGTE05uIhyN1fZQoaAZHQHBPZDJEH+toB0vyaAhHQGTFuDzyz5Z1fZQoaAZHQHMdyZ4Oc2BoB004AWgIR0BkxmHBUJfIdX2UKGgGR0Bv8PW6K+BZaAdNCAFoCEdAZMao1k1/D3V9lChoBkdAca22kzoECGgHTQwBaAhHQGTH1rZamoB1fZQoaAZHQHCWvfCQ9zRoB00gAWgIR0BkyVPJq7AddX2UKGgGR0BHW4JE6T4daAdLyWgIR0Bkyk0rK/21dX2UKGgGR0BwiM5/9YOlaAdNAgFoCEdAZMtLaEi+tnV9lChoBkdAcgX76Hj6vmgHTR0BaAhHQGTMEDIRywR1fZQoaAZHQHHfr6guh9NoB00BAWgIR0BkzXLaEi+tdX2UKGgGR0Bw7/Xf642CaAdNJQFoCEdAZM3M5fdAPnV9lChoBkdAbys9AX2ugmgHTREBaAhHQGTOPhqCYkV1fZQoaAZHQHDkKbONYKZoB00IAWgIR0Bkz01jy4FzdX2UKGgGR0BygZYU34sVaAdNEwFoCEdAZNGjTKDCg3V9lChoBkdAcM087IT4+WgHS/doCEdAZNHvttygf3V9lChoBkdAbAJPWxyGSWgHTQEBaAhHQGTTVhsqJ/J1fZQoaAZHQHH4UxASnLtoB00ZAWgIR0Bk1WVAzHjqdX2UKGgGR0Btqf47A+INaAdNAQFoCEdAZNcO0b961XV9lChoBkdAbafX4CZF5WgHS/RoCEdAZNcrxRVIZ3V9lChoBkdAcwZzYmLLp2gHTREBaAhHQGTXS75Ec811fZQoaAZHQHIFOuFHrhRoB00hAWgIR0Bk5KXlbNbDdX2UKGgGR0BuLK2OQyRCaAdL72gIR0Bk5X/vOQhfdX2UKGgGR0BxO2JKraM8aAdNHQFoCEdAZObRP420iXV9lChoBkdAbv1t4zJp4GgHTQgBaAhHQGTn0waisXB1fZQoaAZHQHLp0bT+ee5oB00tAWgIR0Bk6v4M4LkTdX2UKGgGR0BxmVY0VJtjaAdNCwFoCEdAZOse6I3zc3V9lChoBkdActLCPZIxxmgHTRoBaAhHQGTrhUrCm/F1fZQoaAZHQHJOCN4qwyJoB00eAWgIR0Bk680m+j/NdX2UKGgGR0Bw5Vdld1MeaAdNJAFoCEdAZO6OpbUwz3V9lChoBkdAbvMVxCIDYGgHTQcBaAhHQGTvi6QNkOJ1fZQoaAZHQHA1t6X0Gu9oB00zAWgIR0Bk78WAPNFCdX2UKGgGR0BvvcCNjslcaAdNAQFoCEdAZPBKeTV2BHV9lChoBkdAcSpFn7Hhj2gHS/poCEdAZPM0gKWszXV9lChoBkdAch+p0wJw9GgHTQ0BaAhHQGTzSL61stV1fZQoaAZHQHBk0tRNyo5oB00VAWgIR0Bk86yjYZl4dX2UKGgGR0BvzTWGyon8aAdNOwFoCEdAZPW5p8F6iXV9lChoBkdAbsOWO6unuWgHS/loCEdAZPY6o2n89HV9lChoBkdAce4WrwOOKmgHS/loCEdAZPcoYvWYnnV9lChoBkdAcN7LYwqRU2gHTREBaAhHQGT4FfzBhx51fZQoaAZHQHGpjSPU8V5oB00EAWgIR0Bk+Eaya/h3dX2UKGgGR0BwXVoHs1KoaAdNAgFoCEdAZPsGC7K7qnV9lChoBkdAbprqREF4cGgHS/doCEdAZPsTdtVJc3V9lChoBkdAbdazRhMJyGgHTQ8BaAhHQGT7XYL9deJ1fZQoaAZHQHGCkcXFcY9oB00FAWgIR0Bk/T2nKnvVdX2UKGgGR0BzBrpMYdhiaAdL7WgIR0Bk/glQdjoZdX2UKGgGR0BxuV+9alk6aAdNDwFoCEdAZP4dV/+bVnV9lChoBkdAb+rHMlkYoGgHS/RoCEdAZP/ye7L+xXV9lChoBkdAbcWfGuLaVWgHTQ4BaAhHQGUAyKFZgXx1fZQoaAZHQG/DhDG96C1oB0v+aAhHQGUDw2/BWPt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgxRz/pmZmZmZmahZRSlGgxSwOFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-26.0.1-arm64-arm-64bit Darwin Kernel Version 25.0.0: Wed Sep 17 21:41:45 PDT 2025; root:xnu-12377.1.9~141/RELEASE_ARM64_T6000", "Python": "3.10.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.9.1", "GPU Enabled": "False", "Numpy": "2.2.6", "Cloudpickle": "3.1.2", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2_best_lol.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:64e071181245702a2ebf10f8ddbec64ad1d43e56cf47fe5dab8d8145180315b1
|
| 3 |
+
size 148709
|
ppo-LunarLander-v2_best_lol/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2_best_lol/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x11131fd00>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x11131fd90>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x11131fe20>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x11131feb0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x11131ff40>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x11132c040>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x11132c0d0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x11132c160>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x11132c1f0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x11132c280>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x11132c310>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x11132c3a0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x111321f40>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 0,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 802816,
|
| 25 |
+
"_total_timesteps": 800000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1763916036621200000,
|
| 30 |
+
"learning_rate": {
|
| 31 |
+
":type:": "<class 'function'>",
|
| 32 |
+
":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 33 |
+
},
|
| 34 |
+
"tensorboard_log": "./ppo_lunarlander_tb/",
|
| 35 |
+
"_last_obs": null,
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVfAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpQu"
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCWQzYVZcOMAWyUTTABjAF0lEdAZHhYHxBmgHV9lChoBkdAbZJg+hXbNGgHTQIBaAhHQGR56ij+Jgt1fZQoaAZHQHKMWGM4tHxoB00pAWgIR0BkfO2sq8UVdX2UKGgGR0BxShlwtJ4CaAdL8WgIR0BkfQGhVU++dX2UKGgGR0BxvbTWoWHlaAdNNgFoCEdAZH66z3RG+nV9lChoBkdAcJYaC+UQkGgHTTkBaAhHQGR/lrl/6O51fZQoaAZHQHAKQFgUlAxoB00QAWgIR0BkgVQ9A5aNdX2UKGgGR0BwzpfICEHuaAdNEAFoCEdAZIIKBNEgGXV9lChoBkdAcN2jRD1GsmgHTRYBaAhHQGSMgdGRV6x1fZQoaAZHQHMZKqXF98ZoB01QAWgIR0BkjOKKpDNRdX2UKGgGR0Bu3DcZccENaAdL72gIR0Bkjc3wTdtVdX2UKGgGR0Bwo2j9GZuyaAdL7GgIR0Bkj0v4/NaAdX2UKGgGR0BxFICKaXruaAdNAwFoCEdAZJDOXVsk6nV9lChoBkdAcl/77Kq4pmgHTVUBaAhHQGSRMxXXAdp1fZQoaAZHQHCXqW9lEqloB0v5aAhHQGSS5mI0qH51fZQoaAZHQG566K+BYmtoB00fAWgIR0Bkk3642CNCdX2UKGgGR0BsKJc9nscAaAdNFwFoCEdAZJXOTJQtSXV9lChoBkdAcJH/SH/LkmgHTSoBaAhHQGSW7gCOmzl1fZQoaAZHQHCa7yH2ys1oB00WAWgIR0Bkl2GsV+I/dX2UKGgGR0Bydrgl4TsZaAdNEAFoCEdAZJkJ0GNaQnV9lChoBkdAbylzND+irWgHTQcBaAhHQGSavYe1a4d1fZQoaAZHQHLvNR77bcpoB0vlaAhHQGScIsZpBX11fZQoaAZHQHDdvtpmEoRoB00jAWgIR0BknJj6N2kjdX2UKGgGR0Bu0HRRdhRZaAdL/mgIR0BkneTRplBhdX2UKGgGR0BwaV6Ww/xEaAdL9WgIR0BkoBuAI6bOdX2UKGgGR0Bwvu2jO9nLaAdL+2gIR0BkogE6kqMFdX2UKGgGR0Bx6u4e9zwMaAdNEAFoCEdAZKJVurIYFnV9lChoBkdAQ1xhOP/7zmgHS8poCEdAZKL9v0h/zHV9lChoBkdAbfqulGgBcWgHTQkBaAhHQGSj5lnRLK51fZQoaAZHQHArFzhgmZ5oB00AAWgIR0BkpeYfGMn7dX2UKGgGR0ByFoc1fmcOaAdNKwFoCEdAZKcK4QSSNnV9lChoBkdAbox8stkFwGgHTQQBaAhHQGSnKRMewLV1fZQoaAZHQHJQlJcxCY1oB0v8aAhHQGSocIqslsx1fZQoaAZHQG3HSB06o2poB0v/aAhHQGSp/7Jnxrl1fZQoaAZHQHDedeUpuuRoB0v7aAhHQGSqxEWqLjx1fZQoaAZHQHHXqraM72doB00ZAWgIR0Bkqxw++ueSdX2UKGgGR0BwDUI4VARkaAdL/GgIR0Bkq5pL26CldX2UKGgGR0Bt9pNoJzDGaAdL/2gIR0BkrZ11W8yvdX2UKGgGR0BuhEZLqUu+aAdL8GgIR0Bkrj/jsD4hdX2UKGgGR0BwL0lRgqmTaAdNDgFoCEdAZK8OyVv/BHV9lChoBkdAcCwJJXhfjWgHTRsBaAhHQGS5xpUPxx11fZQoaAZHQHAlVajesPtoB00PAWgIR0BkuuxptaZAdX2UKGgGR0BwBjcVQAMlaAdNJAFoCEdAZLxrP+n623V9lChoBkdAcpjYKYzBRGgHTSUBaAhHQGS80RODaoN1fZQoaAZHQHBP/Hggow5oB00dAWgIR0BkvSFEiMYNdX2UKGgGR0BySkwWWQfZaAdNBAFoCEdAZL5v7WNFSnV9lChoBkdAcT+v2GqPwWgHS/xoCEdAZL7JkoWpInV9lChoBkdAcfFIDHOryWgHTQkBaAhHQGS/5WzWwvB1fZQoaAZHQHFSU8/2TPloB0vtaAhHQGTA2mxdIG11fZQoaAZHQHBUEN4JNTNoB00rAWgIR0BkxC1mapgkdX2UKGgGR0BwbrzAeq7zaAdNAAFoCEdAZMQ+6iCaqnV9lChoBkdAci1c5bQkX2gHTQkBaAhHQGTE05uIhyN1fZQoaAZHQHBPZDJEH+toB0vyaAhHQGTFuDzyz5Z1fZQoaAZHQHMdyZ4Oc2BoB004AWgIR0BkxmHBUJfIdX2UKGgGR0Bv8PW6K+BZaAdNCAFoCEdAZMao1k1/D3V9lChoBkdAca22kzoECGgHTQwBaAhHQGTH1rZamoB1fZQoaAZHQHCWvfCQ9zRoB00gAWgIR0BkyVPJq7AddX2UKGgGR0BHW4JE6T4daAdLyWgIR0Bkyk0rK/21dX2UKGgGR0BwiM5/9YOlaAdNAgFoCEdAZMtLaEi+tnV9lChoBkdAcgX76Hj6vmgHTR0BaAhHQGTMEDIRywR1fZQoaAZHQHHfr6guh9NoB00BAWgIR0BkzXLaEi+tdX2UKGgGR0Bw7/Xf642CaAdNJQFoCEdAZM3M5fdAPnV9lChoBkdAbys9AX2ugmgHTREBaAhHQGTOPhqCYkV1fZQoaAZHQHDkKbONYKZoB00IAWgIR0Bkz01jy4FzdX2UKGgGR0BygZYU34sVaAdNEwFoCEdAZNGjTKDCg3V9lChoBkdAcM087IT4+WgHS/doCEdAZNHvttygf3V9lChoBkdAbAJPWxyGSWgHTQEBaAhHQGTTVhsqJ/J1fZQoaAZHQHH4UxASnLtoB00ZAWgIR0Bk1WVAzHjqdX2UKGgGR0Btqf47A+INaAdNAQFoCEdAZNcO0b961XV9lChoBkdAbafX4CZF5WgHS/RoCEdAZNcrxRVIZ3V9lChoBkdAcwZzYmLLp2gHTREBaAhHQGTXS75Ec811fZQoaAZHQHIFOuFHrhRoB00hAWgIR0Bk5KXlbNbDdX2UKGgGR0BuLK2OQyRCaAdL72gIR0Bk5X/vOQhfdX2UKGgGR0BxO2JKraM8aAdNHQFoCEdAZObRP420iXV9lChoBkdAbv1t4zJp4GgHTQgBaAhHQGTn0waisXB1fZQoaAZHQHLp0bT+ee5oB00tAWgIR0Bk6v4M4LkTdX2UKGgGR0BxmVY0VJtjaAdNCwFoCEdAZOse6I3zc3V9lChoBkdActLCPZIxxmgHTRoBaAhHQGTrhUrCm/F1fZQoaAZHQHJOCN4qwyJoB00eAWgIR0Bk680m+j/NdX2UKGgGR0Bw5Vdld1MeaAdNJAFoCEdAZO6OpbUwz3V9lChoBkdAbvMVxCIDYGgHTQcBaAhHQGTvi6QNkOJ1fZQoaAZHQHA1t6X0Gu9oB00zAWgIR0Bk78WAPNFCdX2UKGgGR0BvvcCNjslcaAdNAQFoCEdAZPBKeTV2BHV9lChoBkdAcSpFn7Hhj2gHS/poCEdAZPM0gKWszXV9lChoBkdAch+p0wJw9GgHTQ0BaAhHQGTzSL61stV1fZQoaAZHQHBk0tRNyo5oB00VAWgIR0Bk86yjYZl4dX2UKGgGR0BvzTWGyon8aAdNOwFoCEdAZPW5p8F6iXV9lChoBkdAbsOWO6unuWgHS/loCEdAZPY6o2n89HV9lChoBkdAce4WrwOOKmgHS/loCEdAZPcoYvWYnnV9lChoBkdAcN7LYwqRU2gHTREBaAhHQGT4FfzBhx51fZQoaAZHQHGpjSPU8V5oB00EAWgIR0Bk+Eaya/h3dX2UKGgGR0BwXVoHs1KoaAdNAgFoCEdAZPsGC7K7qnV9lChoBkdAbprqREF4cGgHS/doCEdAZPsTdtVJc3V9lChoBkdAbdazRhMJyGgHTQ8BaAhHQGT7XYL9deJ1fZQoaAZHQHGCkcXFcY9oB00FAWgIR0Bk/T2nKnvVdX2UKGgGR0BzBrpMYdhiaAdL7WgIR0Bk/glQdjoZdX2UKGgGR0BxuV+9alk6aAdNDwFoCEdAZP4dV/+bVnV9lChoBkdAb+rHMlkYoGgHS/RoCEdAZP/ye7L+xXV9lChoBkdAbcWfGuLaVWgHTQ4BaAhHQGUAyKFZgXx1fZQoaAZHQG/DhDG96C1oB0v+aAhHQGUDw2/BWPt1ZS4="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 980,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV/gAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoC4wCaTiUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.998,
|
| 82 |
+
"gae_lambda": 0.97,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 512,
|
| 87 |
+
"n_epochs": 10,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgxRz/pmZmZmZmahZRSlGgxSwOFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVrwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwJLBUsTQyBkAXwAGAB9AYgBiAGIABgAfAFkAYgCGwATABQAGABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMAXSUhpSMTi92YXIvZm9sZGVycy9kZi93djl3cnpwNTQzajg0Nl93eGNmNzQ5eW0wMDAwZ24vVC9pcHlrZXJuZWxfOTc3NDgvMzM0Njc4OTI5MC5weZSMB2xyX2Z1bmOUSy9DBAgCGAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUjAVwb3dlcpSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpRoGylSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMB2xyX2Z1bmOUjAxfX3F1YWxuYW1lX1+UjCFmYXN0X3N0YXJ0X2RlY2F5Ljxsb2NhbHM+LmxyX2Z1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlGgxRz9QYk3S8an8hZRSlGgxSwKFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2_best_lol/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83ff4a29b4d1f877869509ea885c0a1b0b5894e103ba6e77ff8a63faaf83a258
|
| 3 |
+
size 88375
|
ppo-LunarLander-v2_best_lol/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f88bcea1b7fb06e3789c7afbfebc21a848bfbb4b031b4c4f8657060577a5b26f
|
| 3 |
+
size 43967
|
ppo-LunarLander-v2_best_lol/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b6bbfc035aeac78f3ee425960893ff8bb7927d3cf3425470ac4b6c6ce280c5d
|
| 3 |
+
size 1261
|
ppo-LunarLander-v2_best_lol/system_info.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: macOS-26.0.1-arm64-arm-64bit Darwin Kernel Version 25.0.0: Wed Sep 17 21:41:45 PDT 2025; root:xnu-12377.1.9~141/RELEASE_ARM64_T6000
|
| 2 |
+
- Python: 3.10.19
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.9.1
|
| 5 |
+
- GPU Enabled: False
|
| 6 |
+
- Numpy: 2.2.6
|
| 7 |
+
- Cloudpickle: 3.1.2
|
| 8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87090f46097ec7d842a68bd5beaedebf265cebf1754649b1482d919964e69774
|
| 3 |
+
size 147419
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 255.61729859999997, "std_reward": 20.540850765313294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-11-23T23:45:45.695305"}
|