Upload 9 files
Browse files- added_tokens.json +3 -0
- config.json +29 -18
- decode_utils.py +574 -0
- model.safetensors +3 -0
- modeling_uie.py +162 -0
- special_tokens_map.json +7 -1
- tokenizer.json +0 -0
- tokenizer_config.json +57 -1
- vocab.txt +1 -2
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[UNK]": 39979
|
| 3 |
+
}
|
config.json
CHANGED
|
@@ -1,19 +1,30 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
"
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
"
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "uie_base_pytorch",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"UIEModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoModel": "modeling_uie.UIEModel"
|
| 9 |
+
},
|
| 10 |
+
"classifier_dropout": null,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-12,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "ernie",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"task_type_vocab_size": 3,
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.39.1",
|
| 26 |
+
"type_vocab_size": 4,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"use_task_id": true,
|
| 29 |
+
"vocab_size": 40000
|
| 30 |
+
}
|
decode_utils.py
ADDED
|
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import re
|
| 4 |
+
from typing import (
|
| 5 |
+
List,
|
| 6 |
+
Union,
|
| 7 |
+
Any,
|
| 8 |
+
Optional,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
from transformers import PreTrainedTokenizer
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_id_and_prob(spans, offset_map):
|
| 21 |
+
prompt_length = 0
|
| 22 |
+
for i in range(1, len(offset_map)):
|
| 23 |
+
if offset_map[i] != [0, 0]:
|
| 24 |
+
prompt_length += 1
|
| 25 |
+
else:
|
| 26 |
+
break
|
| 27 |
+
|
| 28 |
+
for i in range(1, prompt_length + 1):
|
| 29 |
+
offset_map[i][0] -= (prompt_length + 1)
|
| 30 |
+
offset_map[i][1] -= (prompt_length + 1)
|
| 31 |
+
|
| 32 |
+
sentence_id = []
|
| 33 |
+
prob = []
|
| 34 |
+
for start, end in spans:
|
| 35 |
+
prob.append(start[1] * end[1])
|
| 36 |
+
sentence_id.append(
|
| 37 |
+
(offset_map[start[0]][0], offset_map[end[0]][1]))
|
| 38 |
+
return sentence_id, prob
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_span(start_ids, end_ids, with_prob=False):
|
| 42 |
+
"""
|
| 43 |
+
Get span set from position start and end list.
|
| 44 |
+
Args:
|
| 45 |
+
start_ids (List[int]/List[tuple]): The start index list.
|
| 46 |
+
end_ids (List[int]/List[tuple]): The end index list.
|
| 47 |
+
with_prob (bool): If True, each element for start_ids and end_ids is a tuple aslike: (index, probability).
|
| 48 |
+
Returns:
|
| 49 |
+
set: The span set without overlapping, every id can only be used once.
|
| 50 |
+
"""
|
| 51 |
+
if with_prob:
|
| 52 |
+
start_ids = sorted(start_ids, key=lambda x: x[0])
|
| 53 |
+
end_ids = sorted(end_ids, key=lambda x: x[0])
|
| 54 |
+
else:
|
| 55 |
+
start_ids = sorted(start_ids)
|
| 56 |
+
end_ids = sorted(end_ids)
|
| 57 |
+
|
| 58 |
+
start_pointer = 0
|
| 59 |
+
end_pointer = 0
|
| 60 |
+
len_start = len(start_ids)
|
| 61 |
+
len_end = len(end_ids)
|
| 62 |
+
couple_dict = {}
|
| 63 |
+
|
| 64 |
+
# 将每一个span的首/尾token的id进行配对(就近匹配,默认没有overlap的情况)
|
| 65 |
+
while start_pointer < len_start and end_pointer < len_end:
|
| 66 |
+
if with_prob:
|
| 67 |
+
start_id = start_ids[start_pointer][0]
|
| 68 |
+
end_id = end_ids[end_pointer][0]
|
| 69 |
+
else:
|
| 70 |
+
start_id = start_ids[start_pointer]
|
| 71 |
+
end_id = end_ids[end_pointer]
|
| 72 |
+
|
| 73 |
+
if start_id == end_id:
|
| 74 |
+
couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
|
| 75 |
+
start_pointer += 1
|
| 76 |
+
end_pointer += 1
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
if start_id < end_id:
|
| 80 |
+
couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
|
| 81 |
+
start_pointer += 1
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
if start_id > end_id:
|
| 85 |
+
end_pointer += 1
|
| 86 |
+
continue
|
| 87 |
+
|
| 88 |
+
result = [(couple_dict[end], end) for end in couple_dict]
|
| 89 |
+
result = set(result)
|
| 90 |
+
return result
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_bool_ids_greater_than(probs, limit=0.5, return_prob=False):
|
| 94 |
+
"""
|
| 95 |
+
Get idx of the last dimension in probability arrays, which is greater than a limitation.
|
| 96 |
+
Args:
|
| 97 |
+
probs (List[List[float]]): The input probability arrays.
|
| 98 |
+
limit (float): The limitation for probability.
|
| 99 |
+
return_prob (bool): Whether to return the probability
|
| 100 |
+
Returns:
|
| 101 |
+
List[List[int]]: The index of the last dimension meet the conditions.
|
| 102 |
+
"""
|
| 103 |
+
probs = np.array(probs)
|
| 104 |
+
dim_len = len(probs.shape)
|
| 105 |
+
if dim_len > 1:
|
| 106 |
+
result = []
|
| 107 |
+
for p in probs:
|
| 108 |
+
result.append(get_bool_ids_greater_than(p, limit, return_prob))
|
| 109 |
+
return result
|
| 110 |
+
else:
|
| 111 |
+
result = []
|
| 112 |
+
for i, p in enumerate(probs):
|
| 113 |
+
if p > limit:
|
| 114 |
+
if return_prob:
|
| 115 |
+
result.append((i, p))
|
| 116 |
+
else:
|
| 117 |
+
result.append(i)
|
| 118 |
+
return result
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def dbc2sbc(s):
|
| 122 |
+
rs = ""
|
| 123 |
+
for char in s:
|
| 124 |
+
code = ord(char)
|
| 125 |
+
if code == 0x3000:
|
| 126 |
+
code = 0x0020
|
| 127 |
+
else:
|
| 128 |
+
code -= 0xfee0
|
| 129 |
+
if not (0x0021 <= code <= 0x7e):
|
| 130 |
+
rs += char
|
| 131 |
+
continue
|
| 132 |
+
rs += chr(code)
|
| 133 |
+
return rs
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def cut_chinese_sent(para):
|
| 137 |
+
"""
|
| 138 |
+
Cut the Chinese sentences more precisely, reference to
|
| 139 |
+
"https://blog.csdn.net/blmoistawinde/article/details/82379256".
|
| 140 |
+
"""
|
| 141 |
+
para = re.sub(r'([。!?\?])([^”’])', r'\1\n\2', para)
|
| 142 |
+
para = re.sub(r'(\.{6})([^”’])', r'\1\n\2', para)
|
| 143 |
+
para = re.sub(r'(\…{2})([^”’])', r'\1\n\2', para)
|
| 144 |
+
para = re.sub(r'([。!?\?][”’])([^,。!?\?])', r'\1\n\2', para)
|
| 145 |
+
para = para.rstrip()
|
| 146 |
+
return para.split("\n")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def auto_splitter(input_texts, max_text_len, split_sentence=False):
|
| 150 |
+
"""
|
| 151 |
+
Split the raw texts automatically for model inference.
|
| 152 |
+
Args:
|
| 153 |
+
input_texts (List[str]): input raw texts.
|
| 154 |
+
max_text_len (int): cutting length.
|
| 155 |
+
split_sentence (bool): If True, sentence-level split will be performed.
|
| 156 |
+
return:
|
| 157 |
+
short_input_texts (List[str]): the short input texts for model inference.
|
| 158 |
+
input_mapping (dict): mapping between raw text and short input texts.
|
| 159 |
+
"""
|
| 160 |
+
input_mapping = {}
|
| 161 |
+
short_input_texts = []
|
| 162 |
+
cnt_short = 0
|
| 163 |
+
for cnt_org, text in enumerate(input_texts):
|
| 164 |
+
sens = cut_chinese_sent(text) if split_sentence else [text]
|
| 165 |
+
for sen in sens:
|
| 166 |
+
lens = len(sen)
|
| 167 |
+
if lens <= max_text_len:
|
| 168 |
+
short_input_texts.append(sen)
|
| 169 |
+
if cnt_org in input_mapping:
|
| 170 |
+
input_mapping[cnt_org].append(cnt_short)
|
| 171 |
+
else:
|
| 172 |
+
input_mapping[cnt_org] = [cnt_short]
|
| 173 |
+
cnt_short += 1
|
| 174 |
+
else:
|
| 175 |
+
temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]
|
| 176 |
+
|
| 177 |
+
short_input_texts.extend(temp_text_list)
|
| 178 |
+
short_idx = cnt_short
|
| 179 |
+
cnt_short += math.ceil(lens / max_text_len)
|
| 180 |
+
temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
|
| 181 |
+
if cnt_org in input_mapping:
|
| 182 |
+
input_mapping[cnt_org].extend(temp_text_id)
|
| 183 |
+
else:
|
| 184 |
+
input_mapping[cnt_org] = temp_text_id
|
| 185 |
+
return short_input_texts, input_mapping
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class UIEDecoder(nn.Module):
|
| 189 |
+
|
| 190 |
+
keys_to_ignore_on_gpu = ["offset_mapping", "texts"]
|
| 191 |
+
|
| 192 |
+
@torch.inference_mode()
|
| 193 |
+
def predict(
|
| 194 |
+
self,
|
| 195 |
+
tokenizer: PreTrainedTokenizer,
|
| 196 |
+
texts: Union[List[str], str],
|
| 197 |
+
schema: Optional[Any] = None,
|
| 198 |
+
batch_size: int = 64,
|
| 199 |
+
max_length: int = 512,
|
| 200 |
+
split_sentence: bool = False,
|
| 201 |
+
position_prob: float = 0.5,
|
| 202 |
+
is_english: bool = False,
|
| 203 |
+
disable_tqdm: bool = True,
|
| 204 |
+
) -> List[Any]:
|
| 205 |
+
self.eval()
|
| 206 |
+
self.tokenizer = tokenizer
|
| 207 |
+
self.is_english = is_english
|
| 208 |
+
if schema is not None:
|
| 209 |
+
self.set_schema(schema)
|
| 210 |
+
|
| 211 |
+
texts = texts
|
| 212 |
+
if isinstance(texts, str):
|
| 213 |
+
texts = [texts]
|
| 214 |
+
return self._multi_stage_predict(
|
| 215 |
+
texts, batch_size, max_length, split_sentence, position_prob, disable_tqdm
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
def set_schema(self, schema):
|
| 219 |
+
if isinstance(schema, (dict, str)):
|
| 220 |
+
schema = [schema]
|
| 221 |
+
self._schema_tree = self._build_tree(schema)
|
| 222 |
+
|
| 223 |
+
def _multi_stage_predict(
|
| 224 |
+
self,
|
| 225 |
+
texts: List[str],
|
| 226 |
+
batch_size: int = 64,
|
| 227 |
+
max_length: int = 512,
|
| 228 |
+
split_sentence: bool = False,
|
| 229 |
+
position_prob: float = 0.5,
|
| 230 |
+
disable_tqdm: bool = True,
|
| 231 |
+
) -> List[Any]:
|
| 232 |
+
""" Traversal the schema tree and do multi-stage prediction. """
|
| 233 |
+
results = [{} for _ in range(len(texts))]
|
| 234 |
+
if len(texts) < 1 or self._schema_tree is None:
|
| 235 |
+
return results
|
| 236 |
+
|
| 237 |
+
schema_list = self._schema_tree.children[:]
|
| 238 |
+
while len(schema_list) > 0:
|
| 239 |
+
node = schema_list.pop(0)
|
| 240 |
+
examples = []
|
| 241 |
+
input_map = {}
|
| 242 |
+
cnt = 0
|
| 243 |
+
idx = 0
|
| 244 |
+
if not node.prefix:
|
| 245 |
+
for data in texts:
|
| 246 |
+
examples.append({"text": data, "prompt": dbc2sbc(node.name)})
|
| 247 |
+
input_map[cnt] = [idx]
|
| 248 |
+
idx += 1
|
| 249 |
+
cnt += 1
|
| 250 |
+
else:
|
| 251 |
+
for pre, data in zip(node.prefix, texts):
|
| 252 |
+
if len(pre) == 0:
|
| 253 |
+
input_map[cnt] = []
|
| 254 |
+
else:
|
| 255 |
+
for p in pre:
|
| 256 |
+
if self.is_english:
|
| 257 |
+
if re.search(r'\[.*?\]$', node.name):
|
| 258 |
+
prompt_prefix = node.name[:node.name.find("[", 1)].strip()
|
| 259 |
+
cls_options = re.search(r'\[.*?\]$', node.name).group()
|
| 260 |
+
# Sentiment classification of xxx [positive, negative]
|
| 261 |
+
prompt = prompt_prefix + p + " " + cls_options
|
| 262 |
+
else:
|
| 263 |
+
prompt = node.name + p
|
| 264 |
+
else:
|
| 265 |
+
prompt = p + node.name
|
| 266 |
+
examples.append(
|
| 267 |
+
{
|
| 268 |
+
"text": data,
|
| 269 |
+
"prompt": dbc2sbc(prompt)
|
| 270 |
+
}
|
| 271 |
+
)
|
| 272 |
+
input_map[cnt] = [i + idx for i in range(len(pre))]
|
| 273 |
+
idx += len(pre)
|
| 274 |
+
cnt += 1
|
| 275 |
+
|
| 276 |
+
result_list = self._single_stage_predict(
|
| 277 |
+
examples, batch_size, max_length, split_sentence, position_prob, disable_tqdm
|
| 278 |
+
) if examples else []
|
| 279 |
+
if not node.parent_relations:
|
| 280 |
+
relations = [[] for _ in range(len(texts))]
|
| 281 |
+
for k, v in input_map.items():
|
| 282 |
+
for idx in v:
|
| 283 |
+
if len(result_list[idx]) == 0:
|
| 284 |
+
continue
|
| 285 |
+
if node.name not in results[k].keys():
|
| 286 |
+
results[k][node.name] = result_list[idx]
|
| 287 |
+
else:
|
| 288 |
+
results[k][node.name].extend(result_list[idx])
|
| 289 |
+
if node.name in results[k].keys():
|
| 290 |
+
relations[k].extend(results[k][node.name])
|
| 291 |
+
else:
|
| 292 |
+
relations = node.parent_relations
|
| 293 |
+
for k, v in input_map.items():
|
| 294 |
+
for i in range(len(v)):
|
| 295 |
+
if len(result_list[v[i]]) == 0:
|
| 296 |
+
continue
|
| 297 |
+
if "relations" not in relations[k][i].keys():
|
| 298 |
+
relations[k][i]["relations"] = {node.name: result_list[v[i]]}
|
| 299 |
+
elif node.name not in relations[k][i]["relations"].keys():
|
| 300 |
+
relations[k][i]["relations"][node.name] = result_list[v[i]]
|
| 301 |
+
else:
|
| 302 |
+
relations[k][i]["relations"][node.name].extend(result_list[v[i]])
|
| 303 |
+
|
| 304 |
+
new_relations = [[] for _ in range(len(texts))]
|
| 305 |
+
for i in range(len(relations)):
|
| 306 |
+
for j in range(len(relations[i])):
|
| 307 |
+
if "relations" in relations[i][j].keys() and node.name in relations[i][j]["relations"].keys():
|
| 308 |
+
for k in range(len(relations[i][j]["relations"][node.name])):
|
| 309 |
+
new_relations[i].append(relations[i][j]["relations"][node.name][k])
|
| 310 |
+
relations = new_relations
|
| 311 |
+
|
| 312 |
+
prefix = [[] for _ in range(len(texts))]
|
| 313 |
+
for k, v in input_map.items():
|
| 314 |
+
for idx in v:
|
| 315 |
+
for i in range(len(result_list[idx])):
|
| 316 |
+
if self.is_english:
|
| 317 |
+
prefix[k].append(" of " + result_list[idx][i]["text"])
|
| 318 |
+
else:
|
| 319 |
+
prefix[k].append(result_list[idx][i]["text"] + "的")
|
| 320 |
+
|
| 321 |
+
for child in node.children:
|
| 322 |
+
child.prefix = prefix
|
| 323 |
+
child.parent_relations = relations
|
| 324 |
+
schema_list.append(child)
|
| 325 |
+
|
| 326 |
+
return results
|
| 327 |
+
|
| 328 |
+
def _convert_ids_to_results(self, examples, sentence_ids, probs):
|
| 329 |
+
""" Convert ids to raw text in a single stage. """
|
| 330 |
+
results = []
|
| 331 |
+
for example, sentence_id, prob in zip(examples, sentence_ids, probs):
|
| 332 |
+
if len(sentence_id) == 0:
|
| 333 |
+
results.append([])
|
| 334 |
+
continue
|
| 335 |
+
result_list = []
|
| 336 |
+
text = example["text"]
|
| 337 |
+
prompt = example["prompt"]
|
| 338 |
+
for i in range(len(sentence_id)):
|
| 339 |
+
start, end = sentence_id[i]
|
| 340 |
+
if start < 0 and end >= 0:
|
| 341 |
+
continue
|
| 342 |
+
if end < 0:
|
| 343 |
+
start += len(prompt) + 1
|
| 344 |
+
end += len(prompt) + 1
|
| 345 |
+
result = {"text": prompt[start: end], "probability": prob[i]}
|
| 346 |
+
else:
|
| 347 |
+
result = {"text": text[start: end], "start": start, "end": end, "probability": prob[i]}
|
| 348 |
+
|
| 349 |
+
result_list.append(result)
|
| 350 |
+
results.append(result_list)
|
| 351 |
+
return results
|
| 352 |
+
|
| 353 |
+
def _auto_splitter(self, input_texts, max_text_len, split_sentence=False):
|
| 354 |
+
"""
|
| 355 |
+
Split the raw texts automatically for model inference.
|
| 356 |
+
Args:
|
| 357 |
+
input_texts (List[str]): input raw texts.
|
| 358 |
+
max_text_len (int): cutting length.
|
| 359 |
+
split_sentence (bool): If True, sentence-level split will be performed.
|
| 360 |
+
return:
|
| 361 |
+
short_input_texts (List[str]): the short input texts for model inference.
|
| 362 |
+
input_mapping (dict): mapping between raw text and short input texts.
|
| 363 |
+
"""
|
| 364 |
+
input_mapping = {}
|
| 365 |
+
short_input_texts = []
|
| 366 |
+
cnt_short = 0
|
| 367 |
+
for cnt_org, text in enumerate(input_texts):
|
| 368 |
+
sens = cut_chinese_sent(text) if split_sentence else [text]
|
| 369 |
+
for sen in sens:
|
| 370 |
+
lens = len(sen)
|
| 371 |
+
if lens <= max_text_len:
|
| 372 |
+
short_input_texts.append(sen)
|
| 373 |
+
if cnt_org in input_mapping:
|
| 374 |
+
input_mapping[cnt_org].append(cnt_short)
|
| 375 |
+
else:
|
| 376 |
+
input_mapping[cnt_org] = [cnt_short]
|
| 377 |
+
cnt_short += 1
|
| 378 |
+
else:
|
| 379 |
+
temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]
|
| 380 |
+
|
| 381 |
+
short_input_texts.extend(temp_text_list)
|
| 382 |
+
short_idx = cnt_short
|
| 383 |
+
cnt_short += math.ceil(lens / max_text_len)
|
| 384 |
+
temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
|
| 385 |
+
if cnt_org in input_mapping:
|
| 386 |
+
input_mapping[cnt_org].extend(temp_text_id)
|
| 387 |
+
else:
|
| 388 |
+
input_mapping[cnt_org] = temp_text_id
|
| 389 |
+
return short_input_texts, input_mapping
|
| 390 |
+
|
| 391 |
+
def _single_stage_predict(
|
| 392 |
+
self,
|
| 393 |
+
inputs: List[dict],
|
| 394 |
+
batch_size: int = 64,
|
| 395 |
+
max_length: int = 512,
|
| 396 |
+
split_sentence: bool = False,
|
| 397 |
+
position_prob: float = 0.5,
|
| 398 |
+
disable_tqdm: bool = True,
|
| 399 |
+
):
|
| 400 |
+
input_texts = []
|
| 401 |
+
prompts = []
|
| 402 |
+
for i in range(len(inputs)):
|
| 403 |
+
input_texts.append(inputs[i]["text"])
|
| 404 |
+
prompts.append(inputs[i]["prompt"])
|
| 405 |
+
# max predict length should exclude the length of prompt and summary tokens
|
| 406 |
+
max_predict_len = max_length - len(max(prompts)) - 3
|
| 407 |
+
|
| 408 |
+
short_input_texts, input_mapping = self._auto_splitter(
|
| 409 |
+
input_texts, max_predict_len, split_sentence=split_sentence
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
short_texts_prompts = []
|
| 413 |
+
for k, v in input_mapping.items():
|
| 414 |
+
short_texts_prompts.extend([prompts[k] for _ in range(len(v))])
|
| 415 |
+
short_inputs = [
|
| 416 |
+
{
|
| 417 |
+
"text": short_input_texts[i],
|
| 418 |
+
"prompt": short_texts_prompts[i]
|
| 419 |
+
}
|
| 420 |
+
for i in range(len(short_input_texts))
|
| 421 |
+
]
|
| 422 |
+
|
| 423 |
+
encoded_inputs = self.tokenizer(
|
| 424 |
+
text=short_texts_prompts,
|
| 425 |
+
text_pair=short_input_texts,
|
| 426 |
+
stride=2,
|
| 427 |
+
truncation=True,
|
| 428 |
+
max_length=max_length,
|
| 429 |
+
padding="longest",
|
| 430 |
+
add_special_tokens=True,
|
| 431 |
+
return_offsets_mapping=True,
|
| 432 |
+
return_tensors="np")
|
| 433 |
+
offset_maps = encoded_inputs["offset_mapping"]
|
| 434 |
+
|
| 435 |
+
start_prob_concat, end_prob_concat = [], []
|
| 436 |
+
if disable_tqdm:
|
| 437 |
+
batch_iterator = range(0, len(short_input_texts), batch_size)
|
| 438 |
+
else:
|
| 439 |
+
batch_iterator = tqdm(range(0, len(short_input_texts), batch_size), desc="Predicting", unit="batch")
|
| 440 |
+
for batch_start in batch_iterator:
|
| 441 |
+
batch = {
|
| 442 |
+
key:
|
| 443 |
+
np.array(value[batch_start: batch_start + batch_size], dtype="int64")
|
| 444 |
+
for key, value in encoded_inputs.items() if key not in self.keys_to_ignore_on_gpu
|
| 445 |
+
}
|
| 446 |
+
|
| 447 |
+
for k, v in batch.items():
|
| 448 |
+
batch[k] = torch.LongTensor(v, device=self.device)
|
| 449 |
+
|
| 450 |
+
outputs = self(**batch)
|
| 451 |
+
start_prob, end_prob = outputs[0], outputs[1]
|
| 452 |
+
if self.device != torch.device("cpu"):
|
| 453 |
+
start_prob, end_prob = start_prob.cpu(), end_prob.cpu()
|
| 454 |
+
start_prob_concat.append(start_prob.detach().numpy())
|
| 455 |
+
end_prob_concat.append(end_prob.detach().numpy())
|
| 456 |
+
|
| 457 |
+
start_prob_concat = np.concatenate(start_prob_concat)
|
| 458 |
+
end_prob_concat = np.concatenate(end_prob_concat)
|
| 459 |
+
|
| 460 |
+
start_ids_list = get_bool_ids_greater_than(start_prob_concat, limit=position_prob, return_prob=True)
|
| 461 |
+
end_ids_list = get_bool_ids_greater_than(end_prob_concat, limit=position_prob, return_prob=True)
|
| 462 |
+
|
| 463 |
+
input_ids = encoded_inputs['input_ids'].tolist()
|
| 464 |
+
sentence_ids, probs = [], []
|
| 465 |
+
for start_ids, end_ids, ids, offset_map in zip(start_ids_list, end_ids_list, input_ids, offset_maps):
|
| 466 |
+
span_list = get_span(start_ids, end_ids, with_prob=True)
|
| 467 |
+
sentence_id, prob = get_id_and_prob(span_list, offset_map.tolist())
|
| 468 |
+
sentence_ids.append(sentence_id)
|
| 469 |
+
probs.append(prob)
|
| 470 |
+
|
| 471 |
+
results = self._convert_ids_to_results(short_inputs, sentence_ids, probs)
|
| 472 |
+
results = self._auto_joiner(results, short_input_texts, input_mapping)
|
| 473 |
+
return results
|
| 474 |
+
|
| 475 |
+
def _auto_joiner(self, short_results, short_inputs, input_mapping):
|
| 476 |
+
concat_results = []
|
| 477 |
+
is_cls_task = False
|
| 478 |
+
for short_result in short_results:
|
| 479 |
+
if not short_result:
|
| 480 |
+
continue
|
| 481 |
+
elif 'start' not in short_result[0].keys() and 'end' not in short_result[0].keys():
|
| 482 |
+
is_cls_task = True
|
| 483 |
+
break
|
| 484 |
+
else:
|
| 485 |
+
break
|
| 486 |
+
for k, vs in input_mapping.items():
|
| 487 |
+
single_results = []
|
| 488 |
+
if is_cls_task:
|
| 489 |
+
cls_options = {}
|
| 490 |
+
for v in vs:
|
| 491 |
+
if len(short_results[v]) == 0:
|
| 492 |
+
continue
|
| 493 |
+
if short_results[v][0]['text'] in cls_options:
|
| 494 |
+
cls_options[short_results[v][0]["text"]][0] += 1
|
| 495 |
+
cls_options[short_results[v][0]["text"]][1] += short_results[v][0]["probability"]
|
| 496 |
+
|
| 497 |
+
else:
|
| 498 |
+
cls_options[short_results[v][0]["text"]] = [1, short_results[v][0]["probability"]]
|
| 499 |
+
|
| 500 |
+
if cls_options:
|
| 501 |
+
cls_res, cls_info = max(cls_options.items(), key=lambda x: x[1])
|
| 502 |
+
concat_results.append(
|
| 503 |
+
[
|
| 504 |
+
{"text": cls_res, "probability": cls_info[1] / cls_info[0]}
|
| 505 |
+
]
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
else:
|
| 509 |
+
concat_results.append([])
|
| 510 |
+
else:
|
| 511 |
+
offset = 0
|
| 512 |
+
for v in vs:
|
| 513 |
+
if v == 0:
|
| 514 |
+
single_results = short_results[v]
|
| 515 |
+
offset += len(short_inputs[v])
|
| 516 |
+
else:
|
| 517 |
+
for i in range(len(short_results[v])):
|
| 518 |
+
if 'start' not in short_results[v][i] or 'end' not in short_results[v][i]:
|
| 519 |
+
continue
|
| 520 |
+
short_results[v][i]["start"] += offset
|
| 521 |
+
short_results[v][i]["end"] += offset
|
| 522 |
+
offset += len(short_inputs[v])
|
| 523 |
+
single_results.extend(short_results[v])
|
| 524 |
+
concat_results.append(single_results)
|
| 525 |
+
return concat_results
|
| 526 |
+
|
| 527 |
+
@classmethod
|
| 528 |
+
def _build_tree(cls, schema, name='root'):
|
| 529 |
+
"""
|
| 530 |
+
Build the schema tree.
|
| 531 |
+
"""
|
| 532 |
+
schema_tree = SchemaTree(name)
|
| 533 |
+
for s in schema:
|
| 534 |
+
if isinstance(s, str):
|
| 535 |
+
schema_tree.add_child(SchemaTree(s))
|
| 536 |
+
elif isinstance(s, dict):
|
| 537 |
+
for k, v in s.items():
|
| 538 |
+
if isinstance(v, str):
|
| 539 |
+
child = [v]
|
| 540 |
+
elif isinstance(v, list):
|
| 541 |
+
child = v
|
| 542 |
+
else:
|
| 543 |
+
raise TypeError(
|
| 544 |
+
f"Invalid schema, value for each key:value pairs should be list or string"
|
| 545 |
+
f"but {type(v)} received")
|
| 546 |
+
schema_tree.add_child(cls._build_tree(child, name=k))
|
| 547 |
+
else:
|
| 548 |
+
raise TypeError(f"Invalid schema, element should be string or dict, but {type(s)} received")
|
| 549 |
+
|
| 550 |
+
return schema_tree
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
class SchemaTree(object):
|
| 554 |
+
"""
|
| 555 |
+
Implementation of SchemaTree
|
| 556 |
+
"""
|
| 557 |
+
|
| 558 |
+
def __init__(self, name='root', children=None):
|
| 559 |
+
self.name = name
|
| 560 |
+
self.children = []
|
| 561 |
+
self.prefix = None
|
| 562 |
+
self.parent_relations = None
|
| 563 |
+
if children is not None:
|
| 564 |
+
for child in children:
|
| 565 |
+
self.add_child(child)
|
| 566 |
+
|
| 567 |
+
def __repr__(self):
|
| 568 |
+
return self.name
|
| 569 |
+
|
| 570 |
+
def add_child(self, node):
|
| 571 |
+
assert isinstance(
|
| 572 |
+
node, SchemaTree
|
| 573 |
+
), "The children of a node should be an instance of SchemaTree."
|
| 574 |
+
self.children.append(node)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3479e5df1444559754f8d5369270d5a15cf40a9e54bbcb5d06ee800888b68fe7
|
| 3 |
+
size 471809912
|
modeling_uie.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import ErnieModel, ErniePreTrainedModel, PretrainedConfig
|
| 7 |
+
from transformers.file_utils import ModelOutput
|
| 8 |
+
|
| 9 |
+
from .decode_utils import UIEDecoder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class UIEModelOutput(ModelOutput):
|
| 14 |
+
"""
|
| 15 |
+
Output class for outputs of UIE.
|
| 16 |
+
losses (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 17 |
+
Total spn extraction losses is the sum of a Cross-Entropy for the start and end positions.
|
| 18 |
+
start_prob (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 19 |
+
Span-start scores (after Sigmoid).
|
| 20 |
+
end_prob (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 21 |
+
Span-end scores (after Sigmoid).
|
| 22 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 23 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layers, +
|
| 24 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 25 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 26 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 27 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 28 |
+
sequence_length)`.
|
| 29 |
+
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 30 |
+
heads.
|
| 31 |
+
"""
|
| 32 |
+
loss: Optional[torch.FloatTensor] = None
|
| 33 |
+
start_prob: torch.FloatTensor = None
|
| 34 |
+
end_prob: torch.FloatTensor = None
|
| 35 |
+
start_positions: torch.FloatTensor = None
|
| 36 |
+
end_positions: torch.FloatTensor = None
|
| 37 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 38 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class UIEModel(ErniePreTrainedModel, UIEDecoder):
|
| 42 |
+
"""
|
| 43 |
+
UIE model based on Bert model.
|
| 44 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 45 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 46 |
+
etc.)
|
| 47 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 48 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 49 |
+
and behavior.
|
| 50 |
+
Parameters:
|
| 51 |
+
config ([`PretrainedConfig`]): Model configuration class with all the parameters of the model.
|
| 52 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 53 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def __init__(self, config: PretrainedConfig):
|
| 57 |
+
super(UIEModel, self).__init__(config)
|
| 58 |
+
self.encoder = ErnieModel(config)
|
| 59 |
+
self.config = config
|
| 60 |
+
hidden_size = self.config.hidden_size
|
| 61 |
+
|
| 62 |
+
self.linear_start = nn.Linear(hidden_size, 1)
|
| 63 |
+
self.linear_end = nn.Linear(hidden_size, 1)
|
| 64 |
+
self.sigmoid = nn.Sigmoid()
|
| 65 |
+
|
| 66 |
+
self.post_init()
|
| 67 |
+
|
| 68 |
+
def forward(
|
| 69 |
+
self,
|
| 70 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 71 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 72 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 74 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 75 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 76 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 77 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 78 |
+
output_attentions: Optional[bool] = None,
|
| 79 |
+
output_hidden_states: Optional[bool] = None,
|
| 80 |
+
) -> UIEModelOutput:
|
| 81 |
+
"""
|
| 82 |
+
Args:
|
| 83 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 84 |
+
Indices of input sequence tokens in the vocabulary.
|
| 85 |
+
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 86 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 87 |
+
[What are input IDs?](../glossary#input-ids)
|
| 88 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 89 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 90 |
+
- 1 for tokens that are **not masked**,
|
| 91 |
+
- 0 for tokens that are **masked**.
|
| 92 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 93 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 94 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 95 |
+
1]`:
|
| 96 |
+
- 0 corresponds to a *sentence A* token,
|
| 97 |
+
- 1 corresponds to a *sentence B* token.
|
| 98 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 99 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 100 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 101 |
+
config.max_position_embeddings - 1]`.
|
| 102 |
+
[What are position IDs?](../glossary#position-ids)
|
| 103 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 104 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 105 |
+
- 1 indicates the head is **not masked**,
|
| 106 |
+
- 0 indicates the head is **masked**.
|
| 107 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 108 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 109 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 110 |
+
model's internal embedding lookup matrix.
|
| 111 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 112 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 113 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outsides of the sequence
|
| 114 |
+
are not taken into account for computing the loss.
|
| 115 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 116 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 117 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outsides of the sequence
|
| 118 |
+
are not taken into account for computing the loss.
|
| 119 |
+
output_attentions (`bool`, *optional*):
|
| 120 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 121 |
+
tensors for more detail.
|
| 122 |
+
output_hidden_states (`bool`, *optional*):
|
| 123 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 124 |
+
more detail.
|
| 125 |
+
return_dict (`bool`, *optional*):
|
| 126 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 127 |
+
"""
|
| 128 |
+
outputs = self.encoder(
|
| 129 |
+
input_ids=input_ids,
|
| 130 |
+
token_type_ids=token_type_ids,
|
| 131 |
+
position_ids=position_ids,
|
| 132 |
+
attention_mask=attention_mask,
|
| 133 |
+
head_mask=head_mask,
|
| 134 |
+
inputs_embeds=inputs_embeds,
|
| 135 |
+
output_attentions=output_attentions,
|
| 136 |
+
output_hidden_states=output_hidden_states,
|
| 137 |
+
)
|
| 138 |
+
sequence_output = outputs[0]
|
| 139 |
+
|
| 140 |
+
start_logits = self.linear_start(sequence_output)
|
| 141 |
+
start_logits = torch.squeeze(start_logits, -1)
|
| 142 |
+
start_prob = self.sigmoid(start_logits)
|
| 143 |
+
|
| 144 |
+
end_logits = self.linear_end(sequence_output)
|
| 145 |
+
end_logits = torch.squeeze(end_logits, -1)
|
| 146 |
+
end_prob = self.sigmoid(end_logits)
|
| 147 |
+
|
| 148 |
+
total_loss = None
|
| 149 |
+
if start_positions is not None and end_positions is not None:
|
| 150 |
+
loss_fct = nn.BCELoss()
|
| 151 |
+
start_loss = loss_fct(start_prob, start_positions)
|
| 152 |
+
end_loss = loss_fct(end_prob, end_positions)
|
| 153 |
+
|
| 154 |
+
total_loss = (start_loss + end_loss) / 2.0
|
| 155 |
+
|
| 156 |
+
return UIEModelOutput(
|
| 157 |
+
loss=total_loss,
|
| 158 |
+
start_prob=start_prob,
|
| 159 |
+
end_prob=end_prob,
|
| 160 |
+
hidden_states=outputs.hidden_states,
|
| 161 |
+
attentions=outputs.attentions,
|
| 162 |
+
)
|
special_tokens_map.json
CHANGED
|
@@ -1 +1,7 @@
|
|
| 1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
CHANGED
|
@@ -1 +1,57 @@
|
|
| 1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[CLS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[MASK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"39979": {
|
| 36 |
+
"content": "[UNK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
CHANGED
|
@@ -12082,7 +12082,6 @@ _
|
|
| 12082 |
ー
|
| 12083 |
★
|
| 12084 |
’
|
| 12085 |
-
$
|
| 12086 |
{
|
| 12087 |
}
|
| 12088 |
‘
|
|
@@ -18003,7 +18002,7 @@ $
|
|
| 18003 |
π
|
| 18004 |
「
|
| 18005 |
」
|
| 18006 |
-
|
| 18007 |
≥
|
| 18008 |
〜
|
| 18009 |
°
|
|
|
|
| 12082 |
ー
|
| 12083 |
★
|
| 12084 |
’
|
|
|
|
| 12085 |
{
|
| 12086 |
}
|
| 12087 |
‘
|
|
|
|
| 18002 |
π
|
| 18003 |
「
|
| 18004 |
」
|
| 18005 |
+
$
|
| 18006 |
≥
|
| 18007 |
〜
|
| 18008 |
°
|