yashrane2904 commited on
Commit
2daadd8
·
verified ·
1 Parent(s): d566403

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -36,21 +36,21 @@ The only limitation you might face is, to get the best results, you will have to
36
  Use the code below to get started with the model.
37
 
38
  ---
39
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
40
- import torch
41
- #Load the model and tokenizer
42
- model = AutoModelForSeq2SeqLM.from_pretrained("yashrane2904/LED_Finetuned").to("cuda")
43
- tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384") # Since it is a fine-tuned version of led-base-16348, we use the same tokenizer as that model used
44
- LONG_ARTICLE = "Your long text goes here..."
45
- #Tokenize the input article
46
- input_ids = tokenizer(LONG_ARTICLE, return_tensors="pt").input_ids.to("cuda")
47
- global_attention_mask = torch.zeros_like(input_ids)
48
- global_attention_mask[:, 0] = 1
49
- #Generate summaries
50
- sequences_tensor = model.generate(input_ids, global_attention_mask=global_attention_mask, num_beams=10, num_beam_groups=1,repetition_penalty=6.0,max_length=600,min_length=350,temperature=1.5)
51
- sequences = sequences_tensor.tolist() # Convert Tensor to list of token IDs
52
- summary = tokenizer.batch_decode(sequences, skip_special_tokens=True) # Decode token IDs into text
53
- #Print the generated summary
54
  print(summary)
55
  ---
56
 
 
36
  Use the code below to get started with the model.
37
 
38
  ---
39
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer <br>
40
+ import torch <br>
41
+ <b><i>#Load the model and tokenizer</i></b><br>
42
+ model = AutoModelForSeq2SeqLM.from_pretrained("yashrane2904/LED_Finetuned").to("cuda")<br>
43
+ tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384") # Since it is a fine-tuned version of led-base-16348, we use the same tokenizer as that model used<br>
44
+ LONG_ARTICLE = "Your long text goes here..."<br>
45
+ <b><i>#Tokenize the input article</i></b><br>
46
+ input_ids = tokenizer(LONG_ARTICLE, return_tensors="pt").input_ids.to("cuda")<br>
47
+ global_attention_mask = torch.zeros_like(input_ids)<br>
48
+ global_attention_mask[:, 0] = 1<br>
49
+ <b><i>#Generate summaries</i></b><br>
50
+ sequences_tensor = model.generate(input_ids, global_attention_mask=global_attention_mask, num_beams=10, num_beam_groups=1,repetition_penalty=6.0,max_length=600,min_length=350,temperature=1.5)<br>
51
+ sequences = sequences_tensor.tolist() # Convert Tensor to list of token IDs<br>
52
+ summary = tokenizer.batch_decode(sequences, skip_special_tokens=True) # Decode token IDs into text<br>
53
+ <b><i>#Print the generated summary</i></b><br>
54
  print(summary)
55
  ---
56