Yannick Kirchhoff
commited on
Commit
·
2f75b90
1
Parent(s):
8caee1f
update README
Browse files- .gitattributes +1 -0
- README.md +73 -3
- assets/BreastDivider.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,73 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# [MICCAI 2025 WOMEN] BreastDivider: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
**Read the paper:** [](https://arxiv.org/abs/2507.13830)
|
| 5 |
+
|
| 6 |
+
> **Authors**: Maximilian Rokuss\*, Benjamin Hamm\*, Yannick Kirchhoff\*, Klaus Maier-Hein
|
| 7 |
+
> \*equal contribution
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+

|
| 11 |
+
|
| 12 |
+
## 🧠 Introduction
|
| 13 |
+
|
| 14 |
+
**Breast MRI** plays a pivotal role in breast cancer detection, diagnosis, and treatment planning. **BreastDivider** addresses a critical limitation in breast MRI segmentation: the lack of distinction between the **left and right breasts** in most public datasets and models.
|
| 15 |
+
|
| 16 |
+
In this work, we introduce the **first publicly available large-scale dataset with explicit left and right breast segmentation labels**, comprising **over 13,000 3D MRI scans**. Accompanying this dataset is a **robust nnU-Net–based segmentation model**, trained specifically to identify and separate left and right breast regions in clinical MRI data. This effort provides a foundation for developing high-quality, anatomically aware tools for breast MRI analysis and offers opportunities for large-scale pretraining.
|
| 17 |
+
|
| 18 |
+
🗂 This repository contains the **model only**\
|
| 19 |
+
📁 The dataset is available [here](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset)\
|
| 20 |
+
🐳 A prebuilt Docker image is available on [DockerHub](https://hub.docker.com/r/ykirchhoff/breastdivider)
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## 🧪 Model
|
| 25 |
+
|
| 26 |
+
The model is based on the [nnU-Net framework](https://github.com/MIC-DKFZ/nnUNet) and was trained on the full [BreastDivider dataset](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset), using a custom configuration that allows both breasts to fit into a single 3D patch.
|
| 27 |
+
|
| 28 |
+
It generalizes well across a variety of MRI modalities, including:
|
| 29 |
+
|
| 30 |
+
- T1-weighted (T1)
|
| 31 |
+
- T1 with contrast (T1+C)
|
| 32 |
+
- T2-weighted (T2)
|
| 33 |
+
- FLAIR
|
| 34 |
+
- Diffusion-weighted imaging (DWI)
|
| 35 |
+
|
| 36 |
+
### 🔧 How to Use
|
| 37 |
+
|
| 38 |
+
#### 🛠️ Manual Installation
|
| 39 |
+
|
| 40 |
+
1. Install nnU-Net following the official [installation instructions](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/installation_instructions.md).
|
| 41 |
+
2. Download the model using git or the huggingface_hub (c.f. [models-downloading](https://huggingface.co/docs/hub/models-downloading))
|
| 42 |
+
3. Run prediction with `nnUNetv2_predict_from_modelfolder -i input_folder -o output_folder -m /path/to/BreastDividerModel`
|
| 43 |
+
|
| 44 |
+
#### 🐳 Docker inference
|
| 45 |
+
|
| 46 |
+
You can use the prebuilt Docker container for easy deployment:\
|
| 47 |
+
**Pull the image:**
|
| 48 |
+
```
|
| 49 |
+
docker pull ykirchhoff/breastdivider:latest
|
| 50 |
+
```
|
| 51 |
+
**Run inference:**
|
| 52 |
+
```
|
| 53 |
+
docker run --ipc=host --rm --gpus all \
|
| 54 |
+
-v "/path/to/input/folder:/mnt/input" \
|
| 55 |
+
-v "/path/to/output/folder:/mnt/output" \
|
| 56 |
+
ykirchhoff/breastdivider:latest \
|
| 57 |
+
/mnt/input /mnt/output
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
## 📄 Citation
|
| 63 |
+
|
| 64 |
+
If you use this dataset or model in your work, please cite:
|
| 65 |
+
|
| 66 |
+
```bibtex
|
| 67 |
+
@article{rokuss2025breastdivider,
|
| 68 |
+
title = {Divide and Conquer: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation},
|
| 69 |
+
author = {Rokuss, Maximilian and Hamm, Benjamin and Kirchhoff, Yannick and Maier-Hein, Klaus},
|
| 70 |
+
journal = {arXiv preprint arXiv:2507.13830},
|
| 71 |
+
year = {2025}
|
| 72 |
+
}
|
| 73 |
+
```
|
assets/BreastDivider.png
ADDED
|
Git LFS Details
|