Yannick Kirchhoff
commited on
Commit
·
e02a0ad
1
Parent(s):
bb7888d
add trained model
Browse files- config.json +7 -0
- dataset.json +16 -0
- fold_all/checkpoint_final.pth +3 -0
- plans.json +200 -0
config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "nnUNet",
|
| 3 |
+
"modality": "MRI",
|
| 4 |
+
"task": "Breast Segmentation",
|
| 5 |
+
"reference": "Rokuss, M., Hamm, B., Kirchhoff, Y., & Maier-Hein, K. (2025). Divide and Conquer: A Large-Scale Dataset and Model for Left-Right Breast MRI Segmentation. arXiv preprint arXiv:2507.13830.",
|
| 6 |
+
"license": "CC BY-NC-SA 4.0"
|
| 7 |
+
}
|
dataset.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"channel_names": {
|
| 3 |
+
"0": "MR"
|
| 4 |
+
},
|
| 5 |
+
"description": "BreastDivider: A Large-Scale Dataset for Left–Right Breast MRI Segmentation",
|
| 6 |
+
"file_ending": ".nii.gz",
|
| 7 |
+
"labels": {
|
| 8 |
+
"background": 0,
|
| 9 |
+
"left": 1,
|
| 10 |
+
"right": 2
|
| 11 |
+
},
|
| 12 |
+
"licence": "CC BY-NC-SA 4.0",
|
| 13 |
+
"numTraining": 13752,
|
| 14 |
+
"reference": "Rokuss, M., Hamm, B., Kirchhoff, Y., & Maier-Hein, K. (2025). Divide and Conquer: A Large-Scale Dataset and Model for Left-Right Breast MRI Segmentation. arXiv preprint arXiv:2507.13830.",
|
| 15 |
+
"release": "July 2025"
|
| 16 |
+
}
|
fold_all/checkpoint_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18441fe5536ce9209d216f8a9ba6e6331c69f54a0acb3fa2fca6428214b92d18
|
| 3 |
+
size 104387177
|
plans.json
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_name": "Dataset203_BreastDivider",
|
| 3 |
+
"plans_name": "nnUNetPlans",
|
| 4 |
+
"original_median_spacing_after_transp": [
|
| 5 |
+
1.9861830472946167,
|
| 6 |
+
0.7031000256538391,
|
| 7 |
+
0.7031000256538391
|
| 8 |
+
],
|
| 9 |
+
"original_median_shape_after_transp": [
|
| 10 |
+
116,
|
| 11 |
+
489,
|
| 12 |
+
510
|
| 13 |
+
],
|
| 14 |
+
"image_reader_writer": "SimpleITKIOWithReorient",
|
| 15 |
+
"transpose_forward": [
|
| 16 |
+
0,
|
| 17 |
+
1,
|
| 18 |
+
2
|
| 19 |
+
],
|
| 20 |
+
"transpose_backward": [
|
| 21 |
+
0,
|
| 22 |
+
1,
|
| 23 |
+
2
|
| 24 |
+
],
|
| 25 |
+
"configurations": {
|
| 26 |
+
"3d_dac": {
|
| 27 |
+
"data_identifier": "nnUNetPlans_3d_dac",
|
| 28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
| 29 |
+
"batch_size": 3,
|
| 30 |
+
"patch_size": [
|
| 31 |
+
128,
|
| 32 |
+
128,
|
| 33 |
+
128
|
| 34 |
+
],
|
| 35 |
+
"median_image_size_in_voxels": [
|
| 36 |
+
106.0,
|
| 37 |
+
477.0,
|
| 38 |
+
484.0
|
| 39 |
+
],
|
| 40 |
+
"spacing": [
|
| 41 |
+
1.6448078360408545,
|
| 42 |
+
2.620146189350635,
|
| 43 |
+
2.658596972003579
|
| 44 |
+
],
|
| 45 |
+
"normalization_schemes": [
|
| 46 |
+
"ZScoreNormalization"
|
| 47 |
+
],
|
| 48 |
+
"use_mask_for_norm": [
|
| 49 |
+
false
|
| 50 |
+
],
|
| 51 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
| 52 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
| 53 |
+
"resampling_fn_data_kwargs": {
|
| 54 |
+
"is_seg": false,
|
| 55 |
+
"order": 3,
|
| 56 |
+
"order_z": 0,
|
| 57 |
+
"force_separate_z": null
|
| 58 |
+
},
|
| 59 |
+
"resampling_fn_seg_kwargs": {
|
| 60 |
+
"is_seg": true,
|
| 61 |
+
"order": 1,
|
| 62 |
+
"order_z": 0,
|
| 63 |
+
"force_separate_z": null
|
| 64 |
+
},
|
| 65 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
| 66 |
+
"resampling_fn_probabilities_kwargs": {
|
| 67 |
+
"is_seg": false,
|
| 68 |
+
"order": 1,
|
| 69 |
+
"order_z": 0,
|
| 70 |
+
"force_separate_z": null
|
| 71 |
+
},
|
| 72 |
+
"architecture": {
|
| 73 |
+
"network_class_name": "dynamic_network_architectures.architectures.unet.PlainConvUNet",
|
| 74 |
+
"arch_kwargs": {
|
| 75 |
+
"n_stages": 6,
|
| 76 |
+
"features_per_stage": [
|
| 77 |
+
32,
|
| 78 |
+
64,
|
| 79 |
+
128,
|
| 80 |
+
256,
|
| 81 |
+
320,
|
| 82 |
+
320
|
| 83 |
+
],
|
| 84 |
+
"conv_op": "torch.nn.modules.conv.Conv3d",
|
| 85 |
+
"kernel_sizes": [
|
| 86 |
+
[
|
| 87 |
+
3,
|
| 88 |
+
3,
|
| 89 |
+
3
|
| 90 |
+
],
|
| 91 |
+
[
|
| 92 |
+
3,
|
| 93 |
+
3,
|
| 94 |
+
3
|
| 95 |
+
],
|
| 96 |
+
[
|
| 97 |
+
3,
|
| 98 |
+
3,
|
| 99 |
+
3
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
3,
|
| 103 |
+
3,
|
| 104 |
+
3
|
| 105 |
+
],
|
| 106 |
+
[
|
| 107 |
+
3,
|
| 108 |
+
3,
|
| 109 |
+
3
|
| 110 |
+
],
|
| 111 |
+
[
|
| 112 |
+
3,
|
| 113 |
+
3,
|
| 114 |
+
3
|
| 115 |
+
]
|
| 116 |
+
],
|
| 117 |
+
"strides": [
|
| 118 |
+
[
|
| 119 |
+
1,
|
| 120 |
+
1,
|
| 121 |
+
1
|
| 122 |
+
],
|
| 123 |
+
[
|
| 124 |
+
2,
|
| 125 |
+
2,
|
| 126 |
+
2
|
| 127 |
+
],
|
| 128 |
+
[
|
| 129 |
+
2,
|
| 130 |
+
2,
|
| 131 |
+
2
|
| 132 |
+
],
|
| 133 |
+
[
|
| 134 |
+
2,
|
| 135 |
+
2,
|
| 136 |
+
2
|
| 137 |
+
],
|
| 138 |
+
[
|
| 139 |
+
2,
|
| 140 |
+
2,
|
| 141 |
+
2
|
| 142 |
+
],
|
| 143 |
+
[
|
| 144 |
+
2,
|
| 145 |
+
2,
|
| 146 |
+
2
|
| 147 |
+
]
|
| 148 |
+
],
|
| 149 |
+
"n_conv_per_stage": [
|
| 150 |
+
2,
|
| 151 |
+
2,
|
| 152 |
+
2,
|
| 153 |
+
2,
|
| 154 |
+
2,
|
| 155 |
+
2
|
| 156 |
+
],
|
| 157 |
+
"n_conv_per_stage_decoder": [
|
| 158 |
+
1,
|
| 159 |
+
1,
|
| 160 |
+
1,
|
| 161 |
+
1,
|
| 162 |
+
1
|
| 163 |
+
],
|
| 164 |
+
"conv_bias": true,
|
| 165 |
+
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
|
| 166 |
+
"norm_op_kwargs": {
|
| 167 |
+
"eps": 1e-05,
|
| 168 |
+
"affine": true
|
| 169 |
+
},
|
| 170 |
+
"dropout_op": null,
|
| 171 |
+
"dropout_op_kwargs": null,
|
| 172 |
+
"nonlin": "torch.nn.LeakyReLU",
|
| 173 |
+
"nonlin_kwargs": {
|
| 174 |
+
"inplace": true
|
| 175 |
+
}
|
| 176 |
+
},
|
| 177 |
+
"_kw_requires_import": [
|
| 178 |
+
"conv_op",
|
| 179 |
+
"norm_op",
|
| 180 |
+
"dropout_op",
|
| 181 |
+
"nonlin"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
"batch_dice": false
|
| 185 |
+
}
|
| 186 |
+
},
|
| 187 |
+
"experiment_planner_used": "ExperimentPlanner",
|
| 188 |
+
"label_manager": "LabelManager",
|
| 189 |
+
"foreground_intensity_properties_per_channel": {
|
| 190 |
+
"0": {
|
| 191 |
+
"max": 32760.0,
|
| 192 |
+
"mean": 341.6798400878906,
|
| 193 |
+
"median": 139.00372314453125,
|
| 194 |
+
"min": -737.0,
|
| 195 |
+
"percentile_00_5": 0.0,
|
| 196 |
+
"percentile_99_5": 3482.0,
|
| 197 |
+
"std": 559.0700073242188
|
| 198 |
+
}
|
| 199 |
+
}
|
| 200 |
+
}
|