File size: 29,879 Bytes
95f4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
"""
Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence
===============================================================
A complete implementation of Aurora's ternary logic architecture featuring:
- Trigate operations with O(1) LUT-based inference, learning, and deduction
- Fractal Tensor structures with hierarchical 3-9-27 organization
- Knowledge Base with multiverse logical space management
- Armonizador for coherence validation and harmonization
- Extender for fractal reconstruction and pattern extension
- Transcender for hierarchical synthesis operations
Author: Aurora Alliance
License: Apache-2.0 + CC-BY-4.0
Version: 1.0.0
"""
from typing import List, Dict, Any, Tuple, Optional, Union
import hashlib
import random
import itertools
import logging
# ===============================================================================
# CONSTANTS AND UTILITIES
# ===============================================================================
PHI = 0.6180339887 # Golden ratio for Pattern 0 generation
Vector = List[Optional[int]] # Ternary value: 0 | 1 | None
# Logger setup
logger = logging.getLogger("aurora.trinity")
if not logger.hasHandlers():
handler = logging.StreamHandler()
formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
# ===============================================================================
# TERNARY LOGIC FOUNDATION
# ===============================================================================
class TernaryLogic:
"""Ternary logic with NULL handling for computational honesty."""
NULL = None
@staticmethod
def ternary_xor(a, b):
"""XOR with NULL propagation."""
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
return TernaryLogic.NULL
return a ^ b
@staticmethod
def ternary_xnor(a, b):
"""XNOR with NULL propagation."""
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
return TernaryLogic.NULL
return 1 - (a ^ b)
# ===============================================================================
# TRIGATE: FUNDAMENTAL LOGIC MODULE
# ===============================================================================
class Trigate:
"""
Fundamental Aurora logic module implementing ternary operations.
Supports three operational modes:
1. Inference: A + B + M -> R (given inputs and control, compute result)
2. Learning: A + B + R -> M (given inputs and result, learn control)
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
All operations are O(1) using precomputed lookup tables (LUTs).
"""
_LUT_INFER: Dict[Tuple, int] = {}
_LUT_LEARN: Dict[Tuple, int] = {}
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
_initialized = False
def __init__(self):
"""Initialize Trigate and ensure LUTs are computed."""
if not Trigate._initialized:
Trigate._initialize_luts()
@classmethod
def _initialize_luts(cls):
"""Initialize all lookup tables for O(1) operations."""
print("Initializing Trigate LUTs...")
states = [0, 1, TernaryLogic.NULL]
# Generate all 27 combinations for each operation
for a in states:
for b in states:
for m in states:
# Inference: A + B + M -> R
if TernaryLogic.NULL in (a, b, m):
r = TernaryLogic.NULL
else:
r = a ^ b if m == 1 else 1 - (a ^ b)
cls._LUT_INFER[(a, b, m)] = r
for r in states:
# Learning: A + B + R -> M
if TernaryLogic.NULL in (a, b, r):
m = TernaryLogic.NULL
else:
m = 1 if (a ^ b) == r else 0
cls._LUT_LEARN[(a, b, r)] = m
# Deduction A: M + R + B -> A
if TernaryLogic.NULL in (m, r, b):
a_result = TernaryLogic.NULL
else:
a_result = b ^ r if m == 1 else 1 - (b ^ r)
cls._LUT_DEDUCE_A[(m, r, b)] = a_result
# Deduction B: M + R + A -> B
if TernaryLogic.NULL in (m, r, a):
b_result = TernaryLogic.NULL
else:
b_result = a ^ r if m == 1 else 1 - (a ^ r)
cls._LUT_DEDUCE_B[(m, r, a)] = b_result
cls._initialized = True
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
"""Inference mode: Compute R given A, B, M."""
if not (len(A) == len(B) == len(M) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
"""Learning mode: Learn M given A, B, R."""
if not (len(A) == len(B) == len(R) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
"""Deduction mode: Deduce A given M, R, B."""
if not (len(M) == len(R) == len(B) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
"""Deduction mode: Deduce B given M, R, A."""
if not (len(M) == len(R) == len(A) == 3):
raise ValueError("All vectors must have exactly 3 elements")
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
"""Aurora synthesis: Generate M (logic) and S (form) from A and B."""
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
return M, S
def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
"""Sequentially reduce a list of ternary vectors."""
if len(vectors) < 2:
raise ValueError("At least 2 vectors required")
history: List[List[Optional[int]]] = []
current = vectors[0]
for nxt in vectors[1:]:
current, _ = self.synthesize(current, nxt)
history.append(current)
return current, history
# ===============================================================================
# FRACTAL TENSOR ARCHITECTURE
# ===============================================================================
class FractalTensor:
"""
Aurora's fundamental data structure with hierarchical 3-9-27 organization.
Supports fractal scaling and semantic coherence validation.
"""
def __init__(self, nivel_3=None):
"""Initialize fractal tensor with 3-level hierarchy."""
self.nivel_3 = nivel_3 or [[0, 0, 0]] # Finest detail level
self.metadata = {}
# Auto-generate hierarchical levels
self._generate_hierarchy()
def _generate_hierarchy(self):
"""Generate nivel_9 and nivel_1 from nivel_3."""
# Nivel 9: group 3 vectors from nivel_3
if len(self.nivel_3) >= 3:
self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
else:
self.nivel_9 = [self.nivel_3]
# Nivel 1: summary vector from nivel_3[0]
if self.nivel_3:
self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
else:
self.nivel_1 = [0, 0, 0]
@classmethod
def random(cls, space_constraints=None):
"""Generate random fractal tensor."""
nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
tensor = cls(nivel_3=nivel_3)
if space_constraints:
tensor.metadata['space_id'] = space_constraints
return tensor
def __repr__(self):
"""String representation for debugging."""
return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"
# ===============================================================================
# KNOWLEDGE BASE SYSTEM
# ===============================================================================
class _SingleUniverseKB:
"""Knowledge base for a single logical space."""
def __init__(self):
self.storage = {}
self.name_index = {}
self.ss_index = {}
def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
"""Add archetype to this universe."""
key = tuple(Ss)
self.storage[key] = archetype_tensor
self.ss_index[key] = archetype_tensor
if name:
self.name_index[name] = archetype_tensor
return True
def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
"""Find archetype by name."""
return self.name_index.get(name)
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
"""Find archetypes by Ss vector."""
key = tuple(Ss_query)
result = self.ss_index.get(key)
return [result] if result else []
class FractalKnowledgeBase:
"""Multi-universe knowledge base manager."""
def __init__(self):
self.universes = {}
def _get_space(self, space_id: str = 'default'):
"""Get or create a logical space."""
if space_id not in self.universes:
self.universes[space_id] = _SingleUniverseKB()
return self.universes[space_id]
def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
"""Add archetype to specified logical space."""
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
"""Get archetype by space_id and name."""
return self._get_space(space_id).find_archetype_by_name(name)
# ===============================================================================
# PROCESSING MODULES
# ===============================================================================
class Transcender:
"""
Componente de síntesis que implementa la síntesis jerárquica
de Tensores Fractales completos.
"""
def __init__(self, fractal_vector: Optional[List[int]] = None):
self.trigate = Trigate()
self.seed_vector = fractal_vector
def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
"""
Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
"""
if len(A) != len(B):
return [0, 0, 0]
diff_vector = []
for i in range(len(A)):
a_val = A[i] if A[i] is not None else 0
b_val = B[i] if B[i] is not None else 0
diff = b_val - a_val
# Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0
if diff > 0:
diff_vector.append(1)
elif diff == 0:
diff_vector.append(0)
else:
diff_vector.append(None)
# Aurora-native: ventana de contexto y relaciones cruzadas
if context and 'prev' in context and 'next' in context:
v_prev = context['prev']
v_next = context['next']
rel_cross = []
for vp, vn in zip(v_prev, v_next):
vp_val = vp if vp is not None else 0
vn_val = vn if vn is not None else 0
diff_cross = vp_val - vn_val
if diff_cross > 0:
rel_cross.append(1)
elif diff_cross == 0:
rel_cross.append(0)
else:
rel_cross.append(None)
# Concatenar: [diff_vector, rel_cross, A, B]
return list(diff_vector) + list(rel_cross) + list(A) + list(B)
return diff_vector
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
"""Procesa un trío de vectores simples (operación base)."""
M_AB, _ = self.trigate.synthesize(A, B)
M_BC, _ = self.trigate.synthesize(B, C)
M_CA, _ = self.trigate.synthesize(C, A)
M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM}
def deep_learning(
self,
A: List[int],
B: List[int],
C: List[int],
M_emergent: Optional[List[int]] = None
) -> Dict[str, Any]:
"""
Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
"""
trio = self.compute_vector_trio(A, B, C)
# Si el caller no aporta M_emergent, usa el calculado.
if M_emergent is None:
M_emergent = trio["M_emergent"]
R_hipotesis = self.trigate.infer(A, B, M_emergent)
return {
"M_emergent": M_emergent,
"MetaM": trio["MetaM"],
"R_hipotesis": R_hipotesis,
}
def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
"""
Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
Prioriza una raíz de entrada válida por encima de la síntesis.
"""
from copy import deepcopy
# Create output tensor with basic structure
out = FractalTensor(nivel_3=[[0, 0, 0]])
# Ensure all tensors have proper structure
if not hasattr(A, 'nivel_3') or not A.nivel_3:
A.nivel_3 = [[0, 0, 0]]
if not hasattr(B, 'nivel_3') or not B.nivel_3:
B.nivel_3 = [[0, 0, 0]]
if not hasattr(C, 'nivel_3') or not C.nivel_3:
C.nivel_3 = [[0, 0, 0]]
def synthesize_trio(vectors: list) -> list:
# Only use first 3 elements of each vector
while len(vectors) < 3:
vectors.append([0, 0, 0])
trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
r = self.compute_vector_trio(*trimmed)
m_emergent = r.get('M_emergent', [0, 0, 0])
return [bit if bit is not None else 0 for bit in m_emergent[:3]]
# Extract vectors for synthesis
A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0]
B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0]
C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0]
# Compute emergent properties
result = self.compute_vector_trio(A_vec, B_vec, C_vec)
# Set output tensor properties
out.nivel_3 = [result["M_emergent"]]
out.Ms = result["M_emergent"]
out.Ss = result.get("Ss", result["MetaM"])
out.MetaM = result["MetaM"]
return out
class Evolver:
"""
Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
"""
def __init__(self):
self.base_transcender = Transcender()
def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor:
"""
Motor de síntesis fractal: reduce una lista de tensores a uno solo.
"""
if not tensors:
return FractalTensor(nivel_3=[[0, 0, 0]])
current_level_tensors = list(tensors)
while len(current_level_tensors) > 1:
next_level_tensors = []
for i in range(0, len(current_level_tensors), 3):
trio = current_level_tensors[i:i+3]
while len(trio) < 3:
trio.append(FractalTensor(nivel_3=[[0, 0, 0]]))
synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
next_level_tensors.append(synthesized_tensor)
current_level_tensors = next_level_tensors
return current_level_tensors[0]
def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
"""Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
if len(tensor_family) < 2:
import warnings
warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0]
return self._perform_full_tensor_synthesis(tensor_family)
class Extender:
"""
Orquestador Aurora refactorizado con expertos como métodos internos para
simplificar el alcance y la gestión de estado.
Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
a partir de consultas simples y contexto, utilizando expertos para validar,
utiliza trigate de form inversa al transcender.
"""
def __init__(self, knowledge_base: FractalKnowledgeBase):
self.kb = knowledge_base
self.transcender = Transcender()
self._lut_tables = {}
self.armonizador = Armonizador(knowledge_base=self.kb)
def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
"""Experto Arquetipo como método."""
universe = self.kb._get_space(space_id)
ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
# Buscar por Ss
archi_ss = universe.find_archetype_by_ss(list(ss_key))
if archi_ss:
logger.debug(f"Found archetype by Ss: {archi_ss}")
return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss
# Fallback: buscar por nombre si hay algún patrón
for name in universe.name_index.keys():
if str(ss_key) in name:
archetype = universe.find_archetype_by_name(name)
if archetype:
logger.debug(f"Found archetype by name pattern: {archetype}")
return True, archetype
logger.debug("No archetype found")
return False, None
def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
"""Experto Dinámica como método."""
universe = self.kb._get_space(space_id)
best, best_sim = None, -1.0
# Buscar en todos los arquetipos almacenados
for key, archetype in universe.storage.items():
if hasattr(archetype, 'nivel_3') and archetype.nivel_3:
archetype_ss = archetype.nivel_3[0]
sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query)
if sim > best_sim:
best_sim, best = sim, archetype
if best and best_sim > 0.7:
return True, best
return False, None
def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
"""Experto Relator como método."""
universe = self.kb._get_space(space_id)
if not universe.storage:
logger.debug("No archetypes in universe")
return False, None
best, best_score = None, float('-inf')
for key, archetype in universe.storage.items():
if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3:
continue
archetype_ss = archetype.nivel_3[0]
rel = self.transcender.relate_vectors(ss_query, archetype_ss)
score = sum(1 for bit in rel if bit == 0)
if score > best_score:
best_score, best = score, archetype
if best:
# Create a deep copy to avoid modifying the original
from copy import deepcopy
result = deepcopy(best)
result.nivel_3[0] = list(ss_query[:3]) # Explicitly preserve root
logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
return True, result
logger.debug("No relational match found")
return False, None
def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]:
"""Lookup in LUT tables."""
lut_key = f"{space_id}:{tuple(ss_query)}"
return self._lut_tables.get(lut_key)
def extend_fractal(self, input_ss, contexto: dict) -> dict:
"""Orquestador Principal."""
log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
# Validación y normalización de ss_query
if hasattr(input_ss, 'nivel_3'):
ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0]
else:
ss_query = input_ss
# Normalizar a un vector ternario de longitud 3
if not isinstance(ss_query, (list, tuple)):
log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
ss_query = [0, 0, 0]
else:
ss_query = [
None if x is None else int(x) if x in (0, 1) else 0
for x in list(ss_query)[:3]
] + [0] * (3 - len(ss_query))
space_id = contexto.get('space_id', 'default')
STEPS = [
lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
self._validate_archetype,
self._project_dynamics,
self._contextualize_relations
]
METHODS = [
"reconstrucción por LUT",
"reconstrucción por arquetipo (axioma)",
"proyección por dinámica (raíz preservada)",
"contextualización por relator (raíz preservada)"
]
for step, method in zip(STEPS, METHODS):
ok, tensor = step(ss_query, space_id)
if ok and tensor is not None:
log.append(f"✅ {method}.")
# Si tensor es lista, seleccionar el más cercano
if isinstance(tensor, list):
tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query])
# For dynamic/relator, preserve root
if method.startswith("proyección") or method.startswith("contextualización"):
from copy import deepcopy
result = deepcopy(tensor)
result.nivel_3[0] = ss_query
root_vector = result.nivel_3[0]
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
result.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": result,
"reconstruction_method": method + " + armonizador",
"log": log
}
from copy import deepcopy
tensor_c = deepcopy(tensor)
root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
tensor_c.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": tensor_c,
"reconstruction_method": method + " + armonizador",
"log": log
}
# Fallback
log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
tensor_n = FractalTensor(nivel_3=[ss_query])
root_vector = tensor_n.nivel_3[0]
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
tensor_n.nivel_3[0] = harm["output"]
return {
"reconstructed_tensor": tensor_n,
"reconstruction_method": "fallback neutro + armonizador",
"log": log
}
class Armonizador:
"""Coherence validator and harmonization engine."""
def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
self.kb = knowledge_base
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
"""Harmonize vector for coherence."""
result_vector = self._microshift(tensor, archetype or [0, 0, 0])
return {
"output": result_vector,
"score": 0,
"adjustments": ["microshift"]
}
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
"""Apply micro-adjustments to vector."""
logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
return vec
class TensorPoolManager:
"""Pool manager for tensor collections."""
def __init__(self):
self.tensors = []
def add_tensor(self, tensor: FractalTensor):
"""Add tensor to pool."""
self.tensors.append(tensor)
# ===============================================================================
# PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
# ===============================================================================
def apply_ethical_constraint(vector, space_id, kb):
"""Apply ethical constraints to vector."""
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
def compute_ethical_signature(cluster):
"""Compute ethical signature for cluster."""
base = str([t.nivel_3[0] for t in cluster]).encode()
return hashlib.sha256(base).hexdigest()
def golden_ratio_select(N, seed):
"""Select indices using golden ratio stepping."""
step = int(max(1, round(N * PHI)))
return [(seed + i * step) % N for i in range(3)]
def pattern0_create_fractal_cluster(
*,
input_data=None,
space_id="default",
num_tensors=3,
context=None,
entropy_seed=PHI,
depth_max=3,
):
"""Generate ethical fractal cluster using Pattern 0."""
random.seed(int(entropy_seed * 1e9))
kb = FractalKnowledgeBase()
armonizador = Armonizador(knowledge_base=kb)
pool = TensorPoolManager()
# Generate tensors
tensors = []
for i in range(num_tensors):
if input_data and i < len(input_data):
vec = apply_ethical_constraint(input_data[i], space_id, kb)
tensor = FractalTensor(nivel_3=[vec])
else:
try:
tensor = FractalTensor.random(space_constraints=space_id)
except TypeError:
tensor = FractalTensor.random()
# Add ethical metadata
tensor.metadata.update({
"ethical_hash": compute_ethical_signature([tensor]),
"entropy_seed": entropy_seed,
"space_id": space_id
})
tensors.append(tensor)
pool.add_tensor(tensor)
# Harmonize cluster
for tensor in tensors:
harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
tensor.nivel_3[0] = harmonized["output"]
return tensors
# ===============================================================================
# PUBLIC API
# ===============================================================================
# Main exports
__all__ = [
'FractalTensor',
'Trigate',
'TernaryLogic',
'Evolver',
'Extender',
'FractalKnowledgeBase',
'Armonizador',
'TensorPoolManager',
'Transcender',
'pattern0_create_fractal_cluster'
]
# Compatibility aliases
KnowledgeBase = FractalKnowledgeBase
|