File size: 29,879 Bytes
95f4def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
"""

Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence

===============================================================



A complete implementation of Aurora's ternary logic architecture featuring:

- Trigate operations with O(1) LUT-based inference, learning, and deduction

- Fractal Tensor structures with hierarchical 3-9-27 organization  

- Knowledge Base with multiverse logical space management

- Armonizador for coherence validation and harmonization

- Extender for fractal reconstruction and pattern extension

- Transcender for hierarchical synthesis operations



Author: Aurora Alliance

License: Apache-2.0 + CC-BY-4.0

Version: 1.0.0

"""

from typing import List, Dict, Any, Tuple, Optional, Union
import hashlib
import random
import itertools
import logging

# ===============================================================================
# CONSTANTS AND UTILITIES
# ===============================================================================

PHI = 0.6180339887  # Golden ratio for Pattern 0 generation
Vector = List[Optional[int]]  # Ternary value: 0 | 1 | None

# Logger setup
logger = logging.getLogger("aurora.trinity")
if not logger.hasHandlers():
    handler = logging.StreamHandler()
    formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
    handler.setFormatter(formatter)
    logger.addHandler(handler)
logger.setLevel(logging.INFO)

# ===============================================================================
# TERNARY LOGIC FOUNDATION
# ===============================================================================

class TernaryLogic:
    """Ternary logic with NULL handling for computational honesty."""
    NULL = None

    @staticmethod
    def ternary_xor(a, b):
        """XOR with NULL propagation."""
        if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
            return TernaryLogic.NULL
        return a ^ b

    @staticmethod
    def ternary_xnor(a, b):
        """XNOR with NULL propagation."""
        if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
            return TernaryLogic.NULL
        return 1 - (a ^ b)

# ===============================================================================
# TRIGATE: FUNDAMENTAL LOGIC MODULE
# ===============================================================================

class Trigate:
    """

    Fundamental Aurora logic module implementing ternary operations.

    

    Supports three operational modes:

    1. Inference: A + B + M -> R (given inputs and control, compute result)

    2. Learning: A + B + R -> M (given inputs and result, learn control)

    3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)

    

    All operations are O(1) using precomputed lookup tables (LUTs).

    """
    
    _LUT_INFER: Dict[Tuple, int] = {}
    _LUT_LEARN: Dict[Tuple, int] = {}
    _LUT_DEDUCE_A: Dict[Tuple, int] = {}
    _LUT_DEDUCE_B: Dict[Tuple, int] = {}
    _initialized = False
    
    def __init__(self):
        """Initialize Trigate and ensure LUTs are computed."""
        if not Trigate._initialized:
            Trigate._initialize_luts()
    
    @classmethod
    def _initialize_luts(cls):
        """Initialize all lookup tables for O(1) operations."""
        print("Initializing Trigate LUTs...")
        states = [0, 1, TernaryLogic.NULL]
        
        # Generate all 27 combinations for each operation
        for a in states:
            for b in states:
                for m in states:
                    # Inference: A + B + M -> R
                    if TernaryLogic.NULL in (a, b, m):
                        r = TernaryLogic.NULL
                    else:
                        r = a ^ b if m == 1 else 1 - (a ^ b)
                    cls._LUT_INFER[(a, b, m)] = r
                    
                for r in states:
                    # Learning: A + B + R -> M
                    if TernaryLogic.NULL in (a, b, r):
                        m = TernaryLogic.NULL
                    else:
                        m = 1 if (a ^ b) == r else 0
                    cls._LUT_LEARN[(a, b, r)] = m
                    
                    # Deduction A: M + R + B -> A
                    if TernaryLogic.NULL in (m, r, b):
                        a_result = TernaryLogic.NULL
                    else:
                        a_result = b ^ r if m == 1 else 1 - (b ^ r)
                    cls._LUT_DEDUCE_A[(m, r, b)] = a_result
                    
                    # Deduction B: M + R + A -> B
                    if TernaryLogic.NULL in (m, r, a):
                        b_result = TernaryLogic.NULL
                    else:
                        b_result = a ^ r if m == 1 else 1 - (a ^ r)
                    cls._LUT_DEDUCE_B[(m, r, a)] = b_result
        
        cls._initialized = True
        print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
    
    def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
        """Inference mode: Compute R given A, B, M."""
        if not (len(A) == len(B) == len(M) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
    
    def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
        """Learning mode: Learn M given A, B, R."""
        if not (len(A) == len(B) == len(R) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
    
    def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
        """Deduction mode: Deduce A given M, R, B."""
        if not (len(M) == len(R) == len(B) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
    
    def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
        """Deduction mode: Deduce B given M, R, A."""
        if not (len(M) == len(R) == len(A) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
    
    def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
        """Aurora synthesis: Generate M (logic) and S (form) from A and B."""
        M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
        S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
        return M, S

    def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
        """Sequentially reduce a list of ternary vectors."""
        if len(vectors) < 2:
            raise ValueError("At least 2 vectors required")

        history: List[List[Optional[int]]] = []
        current = vectors[0]

        for nxt in vectors[1:]:
            current, _ = self.synthesize(current, nxt)
            history.append(current)

        return current, history

# ===============================================================================
# FRACTAL TENSOR ARCHITECTURE
# ===============================================================================

class FractalTensor:
    """

    Aurora's fundamental data structure with hierarchical 3-9-27 organization.

    Supports fractal scaling and semantic coherence validation.

    """
    
    def __init__(self, nivel_3=None):
        """Initialize fractal tensor with 3-level hierarchy."""
        self.nivel_3 = nivel_3 or [[0, 0, 0]]  # Finest detail level
        self.metadata = {}
        
        # Auto-generate hierarchical levels
        self._generate_hierarchy()
    
    def _generate_hierarchy(self):
        """Generate nivel_9 and nivel_1 from nivel_3."""
        # Nivel 9: group 3 vectors from nivel_3
        if len(self.nivel_3) >= 3:
            self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
        else:
            self.nivel_9 = [self.nivel_3]
        
        # Nivel 1: summary vector from nivel_3[0]
        if self.nivel_3:
            self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
        else:
            self.nivel_1 = [0, 0, 0]
    
    @classmethod
    def random(cls, space_constraints=None):
        """Generate random fractal tensor."""
        nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
        tensor = cls(nivel_3=nivel_3)
        if space_constraints:
            tensor.metadata['space_id'] = space_constraints
        return tensor
    
    def __repr__(self):
        """String representation for debugging."""
        return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"

# ===============================================================================
# KNOWLEDGE BASE SYSTEM
# ===============================================================================

class _SingleUniverseKB:
    """Knowledge base for a single logical space."""
    
    def __init__(self):
        self.storage = {}
        self.name_index = {}
        self.ss_index = {}
    
    def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
        """Add archetype to this universe."""
        key = tuple(Ss)
        self.storage[key] = archetype_tensor
        self.ss_index[key] = archetype_tensor
        
        if name:
            self.name_index[name] = archetype_tensor
        
        return True
    
    def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
        """Find archetype by name."""
        return self.name_index.get(name)
    
    def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
        """Find archetypes by Ss vector."""
        key = tuple(Ss_query)
        result = self.ss_index.get(key)
        return [result] if result else []

class FractalKnowledgeBase:
    """Multi-universe knowledge base manager."""
    
    def __init__(self):
        self.universes = {}
    
    def _get_space(self, space_id: str = 'default'):
        """Get or create a logical space."""
        if space_id not in self.universes:
            self.universes[space_id] = _SingleUniverseKB()
        return self.universes[space_id]
    
    def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
        """Add archetype to specified logical space."""
        return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
    
    def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
        """Get archetype by space_id and name."""
        return self._get_space(space_id).find_archetype_by_name(name)

# ===============================================================================
# PROCESSING MODULES
# ===============================================================================

class Transcender:
    """

    Componente de síntesis que implementa la síntesis jerárquica

    de Tensores Fractales completos.

    """
    
    def __init__(self, fractal_vector: Optional[List[int]] = None):
        self.trigate = Trigate()
        self.seed_vector = fractal_vector
    
    def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
        """

        Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.

        """
        if len(A) != len(B):
            return [0, 0, 0]
        diff_vector = []
        for i in range(len(A)):
            a_val = A[i] if A[i] is not None else 0
            b_val = B[i] if B[i] is not None else 0
            diff = b_val - a_val
            # Normalize to ternary: 1 if diff > 0, 0 if diff == 0, None if diff < 0
            if diff > 0:
                diff_vector.append(1)
            elif diff == 0:
                diff_vector.append(0)
            else:
                diff_vector.append(None)
        
        # Aurora-native: ventana de contexto y relaciones cruzadas
        if context and 'prev' in context and 'next' in context:
            v_prev = context['prev']
            v_next = context['next']
            rel_cross = []
            for vp, vn in zip(v_prev, v_next):
                vp_val = vp if vp is not None else 0
                vn_val = vn if vn is not None else 0
                diff_cross = vp_val - vn_val
                if diff_cross > 0:
                    rel_cross.append(1)
                elif diff_cross == 0:
                    rel_cross.append(0)
                else:
                    rel_cross.append(None)
            # Concatenar: [diff_vector, rel_cross, A, B]
            return list(diff_vector) + list(rel_cross) + list(A) + list(B)
        return diff_vector

    def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
        """Procesa un trío de vectores simples (operación base)."""
        M_AB, _ = self.trigate.synthesize(A, B)
        M_BC, _ = self.trigate.synthesize(B, C)
        M_CA, _ = self.trigate.synthesize(C, A)
        M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
        M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
        MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
        return {'M_emergent': M_emergent, 'MetaM': MetaM, 'Ms': M_emergent, 'Ss': MetaM}

    def deep_learning(

        self,

        A: List[int],

        B: List[int],

        C: List[int],

        M_emergent: Optional[List[int]] = None

    ) -> Dict[str, Any]:
        """

        Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.

        Genera R_hipotesis = Trigate.infer(A, B, M_emergent).

        """
        trio = self.compute_vector_trio(A, B, C)

        # Si el caller no aporta M_emergent, usa el calculado.
        if M_emergent is None:
            M_emergent = trio["M_emergent"]

        R_hipotesis = self.trigate.infer(A, B, M_emergent)

        return {
            "M_emergent": M_emergent,
            "MetaM": trio["MetaM"],
            "R_hipotesis": R_hipotesis,
        }

    def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
        """

        Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.

        Prioriza una raíz de entrada válida por encima de la síntesis.

        """
        from copy import deepcopy
        
        # Create output tensor with basic structure
        out = FractalTensor(nivel_3=[[0, 0, 0]])
        
        # Ensure all tensors have proper structure
        if not hasattr(A, 'nivel_3') or not A.nivel_3:
            A.nivel_3 = [[0, 0, 0]]
        if not hasattr(B, 'nivel_3') or not B.nivel_3:
            B.nivel_3 = [[0, 0, 0]]
        if not hasattr(C, 'nivel_3') or not C.nivel_3:
            C.nivel_3 = [[0, 0, 0]]

        def synthesize_trio(vectors: list) -> list:
            # Only use first 3 elements of each vector
            while len(vectors) < 3:
                vectors.append([0, 0, 0])
            trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
            r = self.compute_vector_trio(*trimmed)
            m_emergent = r.get('M_emergent', [0, 0, 0])
            return [bit if bit is not None else 0 for bit in m_emergent[:3]]

        # Extract vectors for synthesis
        A_vec = A.nivel_3[0] if A.nivel_3 else [0, 0, 0]
        B_vec = B.nivel_3[0] if B.nivel_3 else [0, 0, 0]
        C_vec = C.nivel_3[0] if C.nivel_3 else [0, 0, 0]
        
        # Compute emergent properties
        result = self.compute_vector_trio(A_vec, B_vec, C_vec)
        
        # Set output tensor properties
        out.nivel_3 = [result["M_emergent"]]
        out.Ms = result["M_emergent"]
        out.Ss = result.get("Ss", result["MetaM"])
        out.MetaM = result["MetaM"]
        
        return out

class Evolver:
    """

    Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.

    """
    
    def __init__(self):
        self.base_transcender = Transcender()

    def _perform_full_tensor_synthesis(self, tensors: List[FractalTensor]) -> FractalTensor:
        """

        Motor de síntesis fractal: reduce una lista de tensores a uno solo.

        """
        if not tensors:
            return FractalTensor(nivel_3=[[0, 0, 0]])
        
        current_level_tensors = list(tensors)
        while len(current_level_tensors) > 1:
            next_level_tensors = []
            for i in range(0, len(current_level_tensors), 3):
                trio = current_level_tensors[i:i+3]
                while len(trio) < 3:
                    trio.append(FractalTensor(nivel_3=[[0, 0, 0]]))
                synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
                next_level_tensors.append(synthesized_tensor)
            current_level_tensors = next_level_tensors
            
        return current_level_tensors[0]

    def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
        """Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
        if len(tensor_family) < 2:
            import warnings
            warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
            return FractalTensor(nivel_3=[[0, 0, 0]]) if not tensor_family else tensor_family[0]
        return self._perform_full_tensor_synthesis(tensor_family)

class Extender:
    """

    Orquestador Aurora refactorizado con expertos como métodos internos para

    simplificar el alcance y la gestión de estado.



    Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal

    a partir de consultas simples y contexto, utilizando expertos para validar, 

    utiliza trigate de form inversa al transcender.

    """
    
    def __init__(self, knowledge_base: FractalKnowledgeBase):
        self.kb = knowledge_base
        self.transcender = Transcender()
        self._lut_tables = {}
        self.armonizador = Armonizador(knowledge_base=self.kb)

    def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
        """Experto Arquetipo como método."""
        universe = self.kb._get_space(space_id)
        ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
        logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
        
        # Buscar por Ss
        archi_ss = universe.find_archetype_by_ss(list(ss_key))
        if archi_ss:
            logger.debug(f"Found archetype by Ss: {archi_ss}")
            return True, archi_ss[0] if isinstance(archi_ss, list) else archi_ss
        
        # Fallback: buscar por nombre si hay algún patrón
        for name in universe.name_index.keys():
            if str(ss_key) in name:
                archetype = universe.find_archetype_by_name(name)
                if archetype:
                    logger.debug(f"Found archetype by name pattern: {archetype}")
                    return True, archetype
        
        logger.debug("No archetype found")
        return False, None

    def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
        """Experto Dinámica como método."""
        universe = self.kb._get_space(space_id)
        best, best_sim = None, -1.0
        
        # Buscar en todos los arquetipos almacenados
        for key, archetype in universe.storage.items():
            if hasattr(archetype, 'nivel_3') and archetype.nivel_3:
                archetype_ss = archetype.nivel_3[0]
                sim = sum(1 for a, b in zip(archetype_ss, ss_query) if a == b) / len(ss_query)
                if sim > best_sim:
                    best_sim, best = sim, archetype
        
        if best and best_sim > 0.7:
            return True, best
        return False, None

    def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional[FractalTensor]]:
        """Experto Relator como método."""
        universe = self.kb._get_space(space_id)
        if not universe.storage:
            logger.debug("No archetypes in universe")
            return False, None
        
        best, best_score = None, float('-inf')
        for key, archetype in universe.storage.items():
            if not hasattr(archetype, 'nivel_3') or not archetype.nivel_3:
                continue
            
            archetype_ss = archetype.nivel_3[0]
            rel = self.transcender.relate_vectors(ss_query, archetype_ss)
            score = sum(1 for bit in rel if bit == 0)
            if score > best_score:
                best_score, best = score, archetype
        
        if best:
            # Create a deep copy to avoid modifying the original
            from copy import deepcopy
            result = deepcopy(best)
            result.nivel_3[0] = list(ss_query[:3])  # Explicitly preserve root
            logger.debug(f"Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
            return True, result
        
        logger.debug("No relational match found")
        return False, None

    def lookup_lut(self, space_id: str, ss_query: list) -> Optional[FractalTensor]:
        """Lookup in LUT tables."""
        lut_key = f"{space_id}:{tuple(ss_query)}"
        return self._lut_tables.get(lut_key)

    def extend_fractal(self, input_ss, contexto: dict) -> dict:
        """Orquestador Principal."""
        log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
        
        # Validación y normalización de ss_query
        if hasattr(input_ss, 'nivel_3'):
            ss_query = input_ss.nivel_3[0] if input_ss.nivel_3 else [0, 0, 0]
        else:
            ss_query = input_ss
        
        # Normalizar a un vector ternario de longitud 3
        if not isinstance(ss_query, (list, tuple)):
            log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
            ss_query = [0, 0, 0]
        else:
            ss_query = [
                None if x is None else int(x) if x in (0, 1) else 0
                for x in list(ss_query)[:3]
            ] + [0] * (3 - len(ss_query))
        
        space_id = contexto.get('space_id', 'default')
        
        STEPS = [
            lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
            self._validate_archetype,
            self._project_dynamics,
            self._contextualize_relations
        ]
        METHODS = [
            "reconstrucción por LUT",
            "reconstrucción por arquetipo (axioma)",
            "proyección por dinámica (raíz preservada)",
            "contextualización por relator (raíz preservada)"
        ]
        
        for step, method in zip(STEPS, METHODS):
            ok, tensor = step(ss_query, space_id)
            if ok and tensor is not None:
                log.append(f"✅ {method}.")
                
                # Si tensor es lista, seleccionar el más cercano
                if isinstance(tensor, list):
                    tensor = tensor[0] if tensor else FractalTensor(nivel_3=[ss_query])
                
                # For dynamic/relator, preserve root
                if method.startswith("proyección") or method.startswith("contextualización"):
                    from copy import deepcopy
                    result = deepcopy(tensor)
                    result.nivel_3[0] = ss_query
                    root_vector = result.nivel_3[0]
                    harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
                    result.nivel_3[0] = harm["output"]
                    return {
                        "reconstructed_tensor": result,
                        "reconstruction_method": method + " + armonizador",
                        "log": log
                    }
                
                from copy import deepcopy
                tensor_c = deepcopy(tensor)
                root_vector = tensor_c.nivel_3[0] if tensor_c.nivel_3 else ss_query
                harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
                tensor_c.nivel_3[0] = harm["output"]
                return {
                    "reconstructed_tensor": tensor_c,
                    "reconstruction_method": method + " + armonizador",
                    "log": log
                }
        
        # Fallback
        log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
        tensor_n = FractalTensor(nivel_3=[ss_query])
        root_vector = tensor_n.nivel_3[0]
        harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
        tensor_n.nivel_3[0] = harm["output"]
        
        return {
            "reconstructed_tensor": tensor_n,
            "reconstruction_method": "fallback neutro + armonizador",
            "log": log
        }

class Armonizador:
    """Coherence validator and harmonization engine."""
    
    def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
        self.kb = knowledge_base
        self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
    
    def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
        """Harmonize vector for coherence."""
        result_vector = self._microshift(tensor, archetype or [0, 0, 0])
        
        return {
            "output": result_vector,
            "score": 0,
            "adjustments": ["microshift"]
        }
    
    def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
        """Apply micro-adjustments to vector."""
        logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
        return vec

class TensorPoolManager:
    """Pool manager for tensor collections."""
    
    def __init__(self):
        self.tensors = []
    
    def add_tensor(self, tensor: FractalTensor):
        """Add tensor to pool."""
        self.tensors.append(tensor)

# ===============================================================================
# PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
# ===============================================================================

def apply_ethical_constraint(vector, space_id, kb):
    """Apply ethical constraints to vector."""
    rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
    return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]

def compute_ethical_signature(cluster):
    """Compute ethical signature for cluster."""
    base = str([t.nivel_3[0] for t in cluster]).encode()
    return hashlib.sha256(base).hexdigest()

def golden_ratio_select(N, seed):
    """Select indices using golden ratio stepping."""
    step = int(max(1, round(N * PHI)))
    return [(seed + i * step) % N for i in range(3)]

def pattern0_create_fractal_cluster(

    *,

    input_data=None,

    space_id="default",

    num_tensors=3,

    context=None,

    entropy_seed=PHI,

    depth_max=3,

):
    """Generate ethical fractal cluster using Pattern 0."""
    random.seed(int(entropy_seed * 1e9))
    kb = FractalKnowledgeBase()
    armonizador = Armonizador(knowledge_base=kb)
    pool = TensorPoolManager()

    # Generate tensors
    tensors = []
    for i in range(num_tensors):
        if input_data and i < len(input_data):
            vec = apply_ethical_constraint(input_data[i], space_id, kb)
            tensor = FractalTensor(nivel_3=[vec])
        else:
            try:
                tensor = FractalTensor.random(space_constraints=space_id)
            except TypeError:
                tensor = FractalTensor.random()
        
        # Add ethical metadata
        tensor.metadata.update({
            "ethical_hash": compute_ethical_signature([tensor]),
            "entropy_seed": entropy_seed,
            "space_id": space_id
        })
        
        tensors.append(tensor)
        pool.add_tensor(tensor)

    # Harmonize cluster
    for tensor in tensors:
        harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
        tensor.nivel_3[0] = harmonized["output"]

    return tensors

# ===============================================================================
# PUBLIC API
# ===============================================================================

# Main exports
__all__ = [
    'FractalTensor',
    'Trigate', 
    'TernaryLogic',
    'Evolver',
    'Extender', 
    'FractalKnowledgeBase',
    'Armonizador',
    'TensorPoolManager',
    'Transcender',
    'pattern0_create_fractal_cluster'
]

# Compatibility aliases
KnowledgeBase = FractalKnowledgeBase