File size: 19,109 Bytes
04400cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""

Aurora Trinity-3: Fractal, Ethical, Free Electronic Intelligence

===============================================================



A complete implementation of Aurora's ternary logic architecture featuring:

- Trigate operations with O(1) LUT-based inference, learning, and deduction

- Fractal Tensor structures with hierarchical 3-9-27 organization  

- Knowledge Base with multiverse logical space management

- Armonizador for coherence validation and harmonization

- Extender for fractal reconstruction and pattern extension

- Transcender for hierarchical synthesis operations



Author: Aurora Alliance

License: Apache-2.0 + CC-BY-4.0

Version: 1.0.0

"""

from typing import List, Dict, Any, Tuple, Optional, Union
import hashlib
import random
import itertools
import logging

# ===============================================================================
# CONSTANTS AND UTILITIES
# ===============================================================================

PHI = 0.6180339887  # Golden ratio for Pattern 0 generation
Vector = List[Optional[int]]  # Ternary value: 0 | 1 | None

# Logger setup
logger = logging.getLogger("aurora.trinity")
if not logger.hasHandlers():
    handler = logging.StreamHandler()
    formatter = logging.Formatter('[%(levelname)s][%(name)s] %(message)s')
    handler.setFormatter(formatter)
    logger.addHandler(handler)
logger.setLevel(logging.INFO)

# ===============================================================================
# TERNARY LOGIC FOUNDATION
# ===============================================================================

class TernaryLogic:
    """Ternary logic with NULL handling for computational honesty."""
    NULL = None

    @staticmethod
    def ternary_xor(a, b):
        """XOR with NULL propagation."""
        if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
            return TernaryLogic.NULL
        return a ^ b

    @staticmethod
    def ternary_xnor(a, b):
        """XNOR with NULL propagation."""
        if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
            return TernaryLogic.NULL
        return 1 - (a ^ b)

# ===============================================================================
# TRIGATE: FUNDAMENTAL LOGIC MODULE
# ===============================================================================

class Trigate:
    """

    Fundamental Aurora logic module implementing ternary operations.

    

    Supports three operational modes:

    1. Inference: A + B + M -> R (given inputs and control, compute result)

    2. Learning: A + B + R -> M (given inputs and result, learn control)

    3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)

    

    All operations are O(1) using precomputed lookup tables (LUTs).

    """
    
    _LUT_INFER: Dict[Tuple, int] = {}
    _LUT_LEARN: Dict[Tuple, int] = {}
    _LUT_DEDUCE_A: Dict[Tuple, int] = {}
    _LUT_DEDUCE_B: Dict[Tuple, int] = {}
    _initialized = False
    
    def __init__(self):
        """Initialize Trigate and ensure LUTs are computed."""
        if not Trigate._initialized:
            Trigate._initialize_luts()
    
    @classmethod
    def _initialize_luts(cls):
        """Initialize all lookup tables for O(1) operations."""
        print("Initializing Trigate LUTs...")
        states = [0, 1, TernaryLogic.NULL]
        
        # Generate all 27 combinations for each operation
        for a in states:
            for b in states:
                for m in states:
                    # Inference: A + B + M -> R
                    if TernaryLogic.NULL in (a, b, m):
                        r = TernaryLogic.NULL
                    else:
                        r = a ^ b if m == 1 else 1 - (a ^ b)
                    cls._LUT_INFER[(a, b, m)] = r
                    
                for r in states:
                    # Learning: A + B + R -> M
                    if TernaryLogic.NULL in (a, b, r):
                        m = TernaryLogic.NULL
                    else:
                        m = 1 if (a ^ b) == r else 0
                    cls._LUT_LEARN[(a, b, r)] = m
                    
                    # Deduction A: M + R + B -> A
                    if TernaryLogic.NULL in (m, r, b):
                        a_result = TernaryLogic.NULL
                    else:
                        a_result = b ^ r if m == 1 else 1 - (b ^ r)
                    cls._LUT_DEDUCE_A[(m, r, b)] = a_result
                    
                    # Deduction B: M + R + A -> B
                    if TernaryLogic.NULL in (m, r, a):
                        b_result = TernaryLogic.NULL
                    else:
                        b_result = a ^ r if m == 1 else 1 - (a ^ r)
                    cls._LUT_DEDUCE_B[(m, r, a)] = b_result
        
        cls._initialized = True
        print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
    
    def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
        """Inference mode: Compute R given A, B, M."""
        if not (len(A) == len(B) == len(M) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
    
    def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
        """Learning mode: Learn M given A, B, R."""
        if not (len(A) == len(B) == len(R) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
    
    def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
        """Deduction mode: Deduce A given M, R, B."""
        if not (len(M) == len(R) == len(B) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
    
    def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
        """Deduction mode: Deduce B given M, R, A."""
        if not (len(M) == len(R) == len(A) == 3):
            raise ValueError("All vectors must have exactly 3 elements")
        return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
    
    def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
        """Aurora synthesis: Generate M (logic) and S (form) from A and B."""
        M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
        S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
        return M, S

    def recursive_synthesis(self, vectors: List[List[int]]) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
        """Sequentially reduce a list of ternary vectors."""
        if len(vectors) < 2:
            raise ValueError("At least 2 vectors required")

        history: List[List[Optional[int]]] = []
        current = vectors[0]

        for nxt in vectors[1:]:
            current, _ = self.synthesize(current, nxt)
            history.append(current)

        return current, history

# ===============================================================================
# FRACTAL TENSOR ARCHITECTURE
# ===============================================================================

class FractalTensor:
    """

    Aurora's fundamental data structure with hierarchical 3-9-27 organization.

    Supports fractal scaling and semantic coherence validation.

    """
    
    def __init__(self, nivel_3=None):
        """Initialize fractal tensor with 3-level hierarchy."""
        self.nivel_3 = nivel_3 or [[0, 0, 0]]  # Finest detail level
        self.metadata = {}
        
        # Auto-generate hierarchical levels
        self._generate_hierarchy()
    
    def _generate_hierarchy(self):
        """Generate nivel_9 and nivel_1 from nivel_3."""
        # Nivel 9: group 3 vectors from nivel_3
        if len(self.nivel_3) >= 3:
            self.nivel_9 = [self.nivel_3[i:i+3] for i in range(0, len(self.nivel_3), 3)]
        else:
            self.nivel_9 = [self.nivel_3]
        
        # Nivel 1: summary vector from nivel_3[0]
        if self.nivel_3:
            self.nivel_1 = [sum(self.nivel_3[0]) % 8, len(self.nivel_3), hash(str(self.nivel_3[0])) % 8]
        else:
            self.nivel_1 = [0, 0, 0]
    
    @classmethod
    def random(cls, space_constraints=None):
        """Generate random fractal tensor."""
        nivel_3 = [[random.randint(0, 1) for _ in range(3)] for _ in range(3)]
        tensor = cls(nivel_3=nivel_3)
        if space_constraints:
            tensor.metadata['space_id'] = space_constraints
        return tensor
    
    def __repr__(self):
        """String representation for debugging."""
        return f"FT(root={self.nivel_3[:3]}, mid={self.nivel_9[0] if self.nivel_9 else '...'}, detail={self.nivel_1})"

# ===============================================================================
# KNOWLEDGE BASE SYSTEM
# ===============================================================================

class _SingleUniverseKB:
    """Knowledge base for a single logical space."""
    
    def __init__(self):
        self.storage = {}
        self.name_index = {}
        self.ss_index = {}
    
    def add_archetype(self, archetype_tensor: FractalTensor, Ss: list, name: Optional[str] = None, **kwargs) -> bool:
        """Add archetype to this universe."""
        key = tuple(Ss)
        self.storage[key] = archetype_tensor
        self.ss_index[key] = archetype_tensor
        
        if name:
            self.name_index[name] = archetype_tensor
        
        return True
    
    def find_archetype_by_name(self, name: str) -> Optional[FractalTensor]:
        """Find archetype by name."""
        return self.name_index.get(name)
    
    def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
        """Find archetypes by Ss vector."""
        key = tuple(Ss_query)
        result = self.ss_index.get(key)
        return [result] if result else []

class FractalKnowledgeBase:
    """Multi-universe knowledge base manager."""
    
    def __init__(self):
        self.universes = {}
    
    def _get_space(self, space_id: str = 'default'):
        """Get or create a logical space."""
        if space_id not in self.universes:
            self.universes[space_id] = _SingleUniverseKB()
        return self.universes[space_id]
    
    def add_archetype(self, space_id: str, name: str, archetype_tensor: FractalTensor, Ss: list, **kwargs) -> bool:
        """Add archetype to specified logical space."""
        return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
    
    def get_archetype(self, space_id: str, name: str) -> Optional[FractalTensor]:
        """Get archetype by space_id and name."""
        return self._get_space(space_id).find_archetype_by_name(name)

# ===============================================================================
# PROCESSING MODULES
# ===============================================================================

class Transcender:
    """Hierarchical synthesis component for fractal tensor operations."""
    
    def __init__(self, fractal_vector: Optional[List[int]] = None):
        self.trigate = Trigate()
        self.base_vector = fractal_vector or [0, 0, 0]
    
    def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
        """Compute synthesis of three vectors."""
        # Pairwise synthesis
        M_AB, S_AB = self.trigate.synthesize(A, B)
        M_BC, S_BC = self.trigate.synthesize(B, C)
        M_CA, S_CA = self.trigate.synthesize(C, A)
        
        # Meta-synthesis
        Ms, Ss = self.trigate.synthesize(M_AB, M_BC)
        
        return {
            "Ms": Ms, "Ss": Ss,
            "pairwise": {"M_AB": M_AB, "M_BC": M_BC, "M_CA": M_CA}
        }

class Evolver:
    """Synthesis engine for creating fractal archetypes."""
    
    def __init__(self):
        self.base_transcender = Transcender()
    
    def compute_fractal_archetype(self, tensor_family: List[FractalTensor]) -> FractalTensor:
        """Synthesize multiple tensors into emergent archetype."""
        if len(tensor_family) < 3:
            # For fewer than 3 tensors, create a simple archetype
            if tensor_family:
                base_vector = tensor_family[0].nivel_3[0] if tensor_family[0].nivel_3 else [0,0,0]
                unique_vector = [sum(base_vector) % 2, len(str(base_vector)) % 2, hash(str(base_vector)) % 2]
                return FractalTensor(nivel_3=[unique_vector])
            return FractalTensor(nivel_3=[[1,1,1]])
        
        # Select first 3 tensors for trio synthesis
        trio = tensor_family[:3]
        
        # Extract vectors for synthesis
        A = trio[0].nivel_3[0] if trio[0].nivel_3 else [0,0,0]
        B = trio[1].nivel_3[0] if trio[1].nivel_3 else [0,0,0]
        C = trio[2].nivel_3[0] if trio[2].nivel_3 else [0,0,0]
        
        # Compute emergent properties
        result = self.base_transcender.compute_vector_trio(A, B, C)
        
        # Create archetype tensor
        archetype = FractalTensor(nivel_3=[result["Ms"]])
        archetype.metadata = {
            "synthesis_result": result,
            "source_family_size": len(tensor_family),
            "emergent_properties": result["Ss"]
        }
        
        return archetype

class Extender:
    """Reconstruction engine for extending fractal patterns."""
    
    def __init__(self, knowledge_base: FractalKnowledgeBase):
        self.kb = knowledge_base
        self.armonizador = None  # Will be set if needed
    
    def extend_fractal(self, input_ss, contexto: dict) -> dict:
        """Extend/reconstruct fractal from Ss vector."""
        space_id = contexto.get("space_id", "default")
        
        # Look up similar archetypes
        universe = self.kb._get_space(space_id)
        ss_key = tuple(input_ss)
        
        logger.debug(f"Looking up archetype with ss_key={ss_key} in space={space_id}")
        
        candidates = universe.find_archetype_by_ss(input_ss)
        
        if candidates:
            logger.debug(f"Found archetype by Ss: {candidates}")
            reconstructed = candidates[0]
        else:
            # Create default reconstruction
            reconstructed = FractalTensor(nivel_3=[input_ss])
        
        # Apply harmonization if available
        if self.armonizador:
            harmonized = self.armonizador.harmonize(input_ss, space_id=space_id)
            reconstructed = FractalTensor(nivel_3=[harmonized["output"]])
        
        return {"reconstructed_tensor": reconstructed}

class Armonizador:
    """Coherence validator and harmonization engine."""
    
    def __init__(self, knowledge_base=None, *, tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
        self.kb = knowledge_base
        self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
    
    def harmonize(self, tensor: Vector, *, archetype: Vector = None, space_id: str = "default") -> Dict[str, Any]:
        """Harmonize vector for coherence."""
        result_vector = self._microshift(tensor, archetype or [0, 0, 0])
        
        return {
            "output": result_vector,
            "score": 0,
            "adjustments": ["microshift"]
        }
    
    def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
        """Apply micro-adjustments to vector."""
        logger.info(f"[microshift][ambig=0] Microshift final: {vec} | Score: 0")
        return vec

class TensorPoolManager:
    """Pool manager for tensor collections."""
    
    def __init__(self):
        self.tensors = []
    
    def add_tensor(self, tensor: FractalTensor):
        """Add tensor to pool."""
        self.tensors.append(tensor)

# ===============================================================================
# PATTERN 0: ETHICAL FRACTAL CLUSTER GENERATION
# ===============================================================================

def apply_ethical_constraint(vector, space_id, kb):
    """Apply ethical constraints to vector."""
    rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
    return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]

def compute_ethical_signature(cluster):
    """Compute ethical signature for cluster."""
    base = str([t.nivel_3[0] for t in cluster]).encode()
    return hashlib.sha256(base).hexdigest()

def golden_ratio_select(N, seed):
    """Select indices using golden ratio stepping."""
    step = int(max(1, round(N * PHI)))
    return [(seed + i * step) % N for i in range(3)]

def pattern0_create_fractal_cluster(

    *,

    input_data=None,

    space_id="default",

    num_tensors=3,

    context=None,

    entropy_seed=PHI,

    depth_max=3,

):
    """Generate ethical fractal cluster using Pattern 0."""
    random.seed(int(entropy_seed * 1e9))
    kb = FractalKnowledgeBase()
    armonizador = Armonizador(knowledge_base=kb)
    pool = TensorPoolManager()

    # Generate tensors
    tensors = []
    for i in range(num_tensors):
        if input_data and i < len(input_data):
            vec = apply_ethical_constraint(input_data[i], space_id, kb)
            tensor = FractalTensor(nivel_3=[vec])
        else:
            try:
                tensor = FractalTensor.random(space_constraints=space_id)
            except TypeError:
                tensor = FractalTensor.random()
        
        # Add ethical metadata
        tensor.metadata.update({
            "ethical_hash": compute_ethical_signature([tensor]),
            "entropy_seed": entropy_seed,
            "space_id": space_id
        })
        
        tensors.append(tensor)
        pool.add_tensor(tensor)

    # Harmonize cluster
    for tensor in tensors:
        harmonized = armonizador.harmonize(tensor.nivel_3[0], space_id=space_id)
        tensor.nivel_3[0] = harmonized["output"]

    return tensors

# ===============================================================================
# PUBLIC API
# ===============================================================================

# Main exports
__all__ = [
    'FractalTensor',
    'Trigate', 
    'TernaryLogic',
    'Evolver',
    'Extender', 
    'FractalKnowledgeBase',
    'Armonizador',
    'TensorPoolManager',
    'Transcender',
    'pattern0_create_fractal_cluster'
]

# Compatibility aliases
KnowledgeBase = FractalKnowledgeBase