|
|
|
|
|
|
|
|
import hashlib
|
|
|
import random
|
|
|
import itertools
|
|
|
from typing import List, Union, Optional, Tuple, Dict
|
|
|
|
|
|
PHI = 0.6180339887
|
|
|
|
|
|
def apply_ethical_constraint(vector, space_id, kb):
|
|
|
|
|
|
rules = getattr(kb, 'get_ethics', lambda sid: [-1, -1, -1])(space_id) or [-1, -1, -1]
|
|
|
return [v ^ r if r != -1 else v for v, r in zip(vector, rules)]
|
|
|
|
|
|
def compute_ethical_signature(cluster):
|
|
|
base = str([t.nivel_3[0] for t in cluster]).encode()
|
|
|
return hashlib.sha256(base).hexdigest()
|
|
|
|
|
|
def golden_ratio_select(N, seed):
|
|
|
step = int(max(1, round(N * PHI)))
|
|
|
return [(seed + i * step) % N for i in range(3)]
|
|
|
|
|
|
def pattern0_create_fractal_cluster(
|
|
|
*,
|
|
|
input_data=None,
|
|
|
space_id="default",
|
|
|
num_tensors=3,
|
|
|
context=None,
|
|
|
entropy_seed=PHI,
|
|
|
depth_max=3,
|
|
|
):
|
|
|
random.seed(entropy_seed * 1e9)
|
|
|
kb = FractalKnowledgeBase()
|
|
|
armonizador = Armonizador(knowledge_base=kb)
|
|
|
pool = TensorPoolManager()
|
|
|
|
|
|
|
|
|
tensors = []
|
|
|
for i in range(num_tensors):
|
|
|
if input_data and i < len(input_data):
|
|
|
vec = apply_ethical_constraint(input_data[i], space_id, kb)
|
|
|
tensor = FractalTensor(nivel_3=[vec])
|
|
|
else:
|
|
|
|
|
|
try:
|
|
|
tensor = FractalTensor.random(space_constraints=space_id)
|
|
|
except TypeError:
|
|
|
tensor = FractalTensor.random()
|
|
|
tensors.append(tensor)
|
|
|
pool.add_tensor(tensor)
|
|
|
|
|
|
|
|
|
def harmonize_fractal(t, depth=0):
|
|
|
if depth >= depth_max:
|
|
|
return t
|
|
|
t.nivel_3[0] = armonizador.harmonize(t.nivel_3[0], space_id=space_id)["output"]
|
|
|
|
|
|
if hasattr(t, 'get_sublevels'):
|
|
|
for sub in t.get_sublevels():
|
|
|
harmonize_fractal(sub, depth + 1)
|
|
|
return t
|
|
|
|
|
|
tensors = [harmonize_fractal(t) for t in tensors]
|
|
|
|
|
|
|
|
|
idx = golden_ratio_select(len(tensors), int(entropy_seed * 1e6))
|
|
|
cluster = [tensors[i] for i in idx]
|
|
|
|
|
|
|
|
|
signature = compute_ethical_signature(cluster)
|
|
|
if hasattr(kb, 'register_pattern0'):
|
|
|
kb.register_pattern0(
|
|
|
space_id=space_id,
|
|
|
cluster=cluster,
|
|
|
entropy_seed=entropy_seed,
|
|
|
ethical_hash=signature,
|
|
|
)
|
|
|
|
|
|
for t in cluster:
|
|
|
if not hasattr(t, 'metadata') or t.metadata is None:
|
|
|
t.metadata = {}
|
|
|
t.metadata["ethical_hash"] = signature
|
|
|
t.metadata["entropy_seed"] = entropy_seed
|
|
|
t.metadata["space_id"] = space_id
|
|
|
return cluster
|
|
|
|
|
|
|
|
|
def _stub_get_sublevels(self):
|
|
|
|
|
|
subs = []
|
|
|
if hasattr(self, 'nivel_9'):
|
|
|
subs.extend([FractalTensor(nivel_3=[v]) for v in self.nivel_9])
|
|
|
if hasattr(self, 'nivel_27'):
|
|
|
subs.extend([FractalTensor(nivel_3=[v]) for v in self.nivel_27])
|
|
|
return subs
|
|
|
|
|
|
def _stub_register_pattern0(self, space_id, cluster, entropy_seed, ethical_hash):
|
|
|
|
|
|
if not hasattr(self, 'pattern0_registry'):
|
|
|
self.pattern0_registry = {}
|
|
|
self.pattern0_registry[space_id] = {
|
|
|
'cluster': cluster,
|
|
|
'entropy_seed': entropy_seed,
|
|
|
'ethical_hash': ethical_hash,
|
|
|
}
|
|
|
|
|
|
def _stub_get_ethics(self, space_id):
|
|
|
|
|
|
return [-1, -1, -1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
you may not use this file except in compliance with the License.
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
See the License for the specific language governing permissions and
|
|
|
limitations under the License.
|
|
|
"""
|
|
|
|
|
|
'''
|
|
|
NO BORRAR ESTA NOTAS:
|
|
|
librereria trinity-3: Classes pare el nuecleo de modelo Aurora de inteligencia electronica
|
|
|
El nucleo hacer 3 operaciones fundamentales:
|
|
|
1. Obtner la inteligencia de la realcion entre los valores de las dimension de los tnensores fractales y su relacion con el contexto.
|
|
|
2. Almacenar la inteligencia como knowledge base que deber ser utilizar para de forma recursiva obtener la inteligencia de los tensores fractales.
|
|
|
3. Extender la inteligencia a nuevos tensores fractales y contextos en base a dinamicas y devolverlo como output al usuario.
|
|
|
|
|
|
PRINCIPIOS DE DESARROLLO:
|
|
|
1. Simplicidad, el codigo nunca debe basar en cadenas larga de if and else. Tienes que ser elegante y en todo caso bascar soluciones recusivas/Fracta.
|
|
|
2. Autosimilitud. El codigo debe buscar que todos los mecanimso de emergencia y aprendizaje de relgas sigan patrones similares en cada uno de sus componentes
|
|
|
3. Reversibilidad triple. El codigo de transcendiencia, extension y aprendizaje, debe tener la misma logica pero en direccion inversa.
|
|
|
|
|
|
Cada uno de los elementos del sistema deber usar el trigate, como atomo fundamental de la logica ternaria.
|
|
|
|
|
|
Los tensores fractales son la entrada del sistema, se analizan desde el transcenders, se analizar tensores de 3 en tres que realiza una triple accion:
|
|
|
|
|
|
1. Obtiene la relacion entre los tensores fractales y su contexto.
|
|
|
2. Emerge los tensores fractales base a un nivel superior.
|
|
|
3. ?????
|
|
|
|
|
|
|
|
|
La informacion de relaciones obtenidas por el transceder pasa al extender que se encarga de reconstruir los tensores apartir de
|
|
|
|
|
|
Una vez el tensor llega al sinteizarse en un solo tensor, pasa al extender, que realiza la extension de los tensores fractales a partir de la informacion de la KB y el tensor sintetizado.
|
|
|
|
|
|
Una vez el ciclo esta completo, se puede realizar un test de integridad y coherencia del flujo de trabajo. De eso se encarga el armonizador, un comprobando que el sistema esta armonizado y los tenosres de salida so coherentes.
|
|
|
Si no es asi inicia un proces de correccion o armonizacion, en el que se incia un ciclo de recurisova de prueba hasta que el sistema es coherente:
|
|
|
1. En primer lugar busca una correccion de los tensores fractales.
|
|
|
2. Si no es posible, busca una correccion de las relaciones.
|
|
|
3. Si no es posible, busca una correccion de los valores del sistema.
|
|
|
|
|
|
Los tensores fractales son los que aportan la inteligencia al sistema. Esta formado por vectores ternarios de 3 dimensiones, que representan la relacion entre los valores de las dimensiones y su contexto.
|
|
|
Cada valor dimensional represnta la forma, la estructura y la funcion del vector.
|
|
|
Cada valor dimensional esta compuesto por 3trits (0, 1, None) que representan la relacion entre los valores de las dimensiones y su contexto.
|
|
|
|
|
|
Cada valor dimensional tiene una doble funcion: Por un lado representa el valor de la dimension y por otro identifica el espacion dimensional inferior.
|
|
|
Cada valor dimensional tiene asocidado se vector inferior. Los aximoas del espacio inferior depende de valor de la dimension superior.
|
|
|
|
|
|
La forma de tensor es 1 3 9 donde cada nivel es un vector de 3 dimensiones. Cada ima de las dimensione represtan la forma, la estructura y la funcion del elemento.
|
|
|
|
|
|
|
|
|
|
|
|
Documentacion extensas para seguir en : documentation/documentation.txt
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InverseEvolver:
|
|
|
|
|
|
def reconstruct_fractal(self, synthesized):
|
|
|
"""Reconstruye tres tensores fractales a partir de uno sintetizado (nivel 3, 9, 27)."""
|
|
|
ms_key = synthesized.nivel_3[0]
|
|
|
|
|
|
A, B = self.reconstruct_vectors(ms_key) if hasattr(self, 'reconstruct_vectors') else (ms_key, ms_key)
|
|
|
C = [a ^ b if a is not None and b is not None else None for a, b in zip(A, B)]
|
|
|
|
|
|
return [FractalTensor(nivel_3=[A]), FractalTensor(nivel_3=[B]), FractalTensor(nivel_3=[C])]
|
|
|
|
|
|
|
|
|
def impute_none(vec, context, tensor=None):
|
|
|
from statistics import mode
|
|
|
result = []
|
|
|
for i, v in enumerate(vec):
|
|
|
if v is not None:
|
|
|
result.append(v)
|
|
|
else:
|
|
|
col = [c[i] for c in context if c[i] is not None]
|
|
|
|
|
|
if tensor and hasattr(tensor, 'nivel_9') and tensor.nivel_9 and i < len(tensor.nivel_9[0]):
|
|
|
col.extend([x for x in tensor.nivel_9[i] if x is not None])
|
|
|
result.append(mode(col) if col else 0)
|
|
|
return result
|
|
|
|
|
|
|
|
|
from statistics import mode
|
|
|
def impute_none(vec, context):
|
|
|
"""Imputa None usando la moda de valores adyacentes en el contexto."""
|
|
|
result = []
|
|
|
for i, v in enumerate(vec):
|
|
|
if v is not None:
|
|
|
result.append(v)
|
|
|
else:
|
|
|
col = [c[i] for c in context if c[i] is not None]
|
|
|
result.append(mode(col) if col else 0)
|
|
|
return result
|
|
|
|
|
|
|
|
|
def validate_ternary_input(vec, expected_len=3, name="input"):
|
|
|
if not isinstance(vec, (list, tuple)) or len(vec) != expected_len:
|
|
|
print(f"Warning: Invalid {name}: {vec}, using default {[0]*expected_len}")
|
|
|
return [0] * expected_len
|
|
|
return [None if x is None else int(x) % 2 for x in vec]
|
|
|
|
|
|
|
|
|
class AdjustmentStep:
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
raise NotImplementedError
|
|
|
|
|
|
class MicroShift(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
|
|
|
return [a if v is None else v for v, a in zip(vec, archetype)]
|
|
|
|
|
|
class Regrewire(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
|
|
|
if sum(1 for v, a in zip(vec, archetype) if v == a) >= 2:
|
|
|
return list(archetype)
|
|
|
return vec
|
|
|
|
|
|
class Metatune(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
|
|
|
if kb is not None:
|
|
|
matches = kb.find_archetype_by_ms(archetype)
|
|
|
if matches:
|
|
|
return matches[0]
|
|
|
return vec
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
def golden_ratio_skip_indices(N, k, trios=3):
|
|
|
"""Devuelve una lista de índices para formar un trío usando saltos áureos."""
|
|
|
phi = (1 + math.sqrt(5)) / 2
|
|
|
skip = max(1, int(N / phi))
|
|
|
indices = []
|
|
|
idx = k
|
|
|
for _ in range(trios):
|
|
|
indices.append(idx % N)
|
|
|
idx = (idx + skip) % N
|
|
|
return indices
|
|
|
|
|
|
def fibonacci(n):
|
|
|
a, b = 1, 1
|
|
|
for _ in range(n):
|
|
|
a, b = b, a + b
|
|
|
return a
|
|
|
|
|
|
def fibonacci_stepping_indices(N, k, trios=3, start_step=0):
|
|
|
"""Devuelve una lista de índices para formar un trío usando pasos de Fibonacci."""
|
|
|
indices = []
|
|
|
idx = k
|
|
|
for i in range(start_step, start_step + trios):
|
|
|
step = fibonacci(i)
|
|
|
indices.append(idx % N)
|
|
|
idx = (idx + step) % N
|
|
|
return indices
|
|
|
|
|
|
|
|
|
def formar_trio_golden(tensores, k):
|
|
|
N = len(tensores)
|
|
|
idxs = golden_ratio_skip_indices(N, k)
|
|
|
return [tensores[i] for i in idxs]
|
|
|
|
|
|
def formar_trio_fibonacci(tensores, k, start_step=0):
|
|
|
N = len(tensores)
|
|
|
idxs = fibonacci_stepping_indices(N, k, start_step=start_step)
|
|
|
return [tensores[i] for i in idxs]
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
import operator
|
|
|
|
|
|
|
|
|
|
|
|
def normalize_ternary_vector(vec, default=[0, 0, 0]):
|
|
|
"""Normaliza un vector a ternario de longitud 3."""
|
|
|
if not isinstance(vec, (list, tuple)):
|
|
|
return default.copy()
|
|
|
return [
|
|
|
None if x is None else int(x) if x in (0, 1) else 0
|
|
|
for x in list(vec)[:3]
|
|
|
] + [0] * (3 - len(vec))
|
|
|
|
|
|
def validate_function_sequence(M, allowed_functions, max_len=2):
|
|
|
"""Valida que M sea una lista de listas de funciones permitidas."""
|
|
|
if not isinstance(M, (list, tuple)) or len(M) != 3:
|
|
|
return [[f_id] for _ in range(3)]
|
|
|
return [
|
|
|
list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id]
|
|
|
for seq in M[:3]
|
|
|
] + [[f_id]] * (3 - len(M))
|
|
|
|
|
|
def aurora_apply_sequence(val, sequence):
|
|
|
"""Aplica una secuencia de funciones a un valor."""
|
|
|
for func in sequence:
|
|
|
val = func(val)
|
|
|
return val
|
|
|
|
|
|
def aurora_triage_inferencia(A, B, M):
|
|
|
"""Inferencia: Aplica la composición M a A y/o B y retorna el resultado emergente."""
|
|
|
logger.info("Iniciando inferencia funcional", extra={'stage': 'inferencia', 'ambiguity': 0})
|
|
|
allowed_functions = [f_not, f_inc, f_id]
|
|
|
A = normalize_ternary_vector(A)
|
|
|
B = normalize_ternary_vector(B)
|
|
|
M = validate_function_sequence(M, allowed_functions)
|
|
|
R = []
|
|
|
for i in range(3):
|
|
|
rA = aurora_apply_sequence(A[i], M[i])
|
|
|
rB = aurora_apply_sequence(B[i], M[i])
|
|
|
if rA is not None and rB is not None:
|
|
|
R.append(rA + rB)
|
|
|
else:
|
|
|
R.append(0)
|
|
|
logger.info(f"Inferencia completada: R={R}", extra={'stage': 'inferencia', 'ambiguity': R.count(None)})
|
|
|
return R
|
|
|
|
|
|
def aurora_triage_aprendizaje(A, B, R, funciones_permitidas, max_len=2):
|
|
|
"""Aprendizaje: Busca una composición de funciones (por bit) que aplicada a A y B da R."""
|
|
|
logger.info("Iniciando aprendizaje funcional", extra={'stage': 'aprendizaje', 'ambiguity': 0})
|
|
|
import itertools
|
|
|
A = normalize_ternary_vector(A)
|
|
|
B = normalize_ternary_vector(B)
|
|
|
R = normalize_ternary_vector(R)
|
|
|
M = []
|
|
|
for i in range(3):
|
|
|
found = False
|
|
|
for l in range(1, max_len+1):
|
|
|
for seq in itertools.product(funciones_permitidas, repeat=l):
|
|
|
rA = aurora_apply_sequence(A[i], seq)
|
|
|
rB = aurora_apply_sequence(B[i], seq)
|
|
|
if rA is not None and rB is not None and rA + rB == R[i]:
|
|
|
M.append(list(seq))
|
|
|
found = True
|
|
|
break
|
|
|
if found:
|
|
|
break
|
|
|
if not found:
|
|
|
M.append([f_id])
|
|
|
logger.warning(f"No se encontró secuencia para bit {i}, usando identidad", extra={'stage': 'aprendizaje', 'ambiguity': 1})
|
|
|
logger.info(f"Aprendizaje completado: M={M}", extra={'stage': 'aprendizaje', 'ambiguity': sum(len(m) for m in M)})
|
|
|
return M
|
|
|
|
|
|
def aurora_triage_deduccion(M, R, known, known_is_A=True):
|
|
|
"""Deducción: Dado M, R y A (o B), deduce B (o A) aplicando las inversas."""
|
|
|
logger.info("Iniciando deducción funcional", extra={'stage': 'deduccion', 'ambiguity': 0})
|
|
|
allowed_functions = [f_not, f_inc, f_id]
|
|
|
R = normalize_ternary_vector(R)
|
|
|
known = normalize_ternary_vector(known)
|
|
|
M = validate_function_sequence(M, allowed_functions)
|
|
|
deduced = []
|
|
|
for i in range(3):
|
|
|
val = R[i] - aurora_apply_sequence(known[i], M[i]) if R[i] is not None and known[i] is not None else 0
|
|
|
for func in reversed(M[i]):
|
|
|
if hasattr(func, 'inverse'):
|
|
|
val = func.inverse(val)
|
|
|
else:
|
|
|
logger.warning(f"No hay inversa para función en bit {i}, asumiendo identidad", extra={'stage': 'deduccion', 'ambiguity': 1})
|
|
|
deduced.append(val if val in (0, 1, None) else 0)
|
|
|
logger.info(f"Deducción completada: {deduced}", extra={'stage': 'deduccion', 'ambiguity': deduced.count(None)})
|
|
|
return deduced
|
|
|
|
|
|
|
|
|
def f_not(x):
|
|
|
return 1 - x if x in (0, 1) else 0
|
|
|
def f_not_inv(x):
|
|
|
return 1 - x if x in (0, 1) else 0
|
|
|
f_not.inverse = f_not_inv
|
|
|
|
|
|
def f_inc(x):
|
|
|
return (x + 1) % 2 if x in (0, 1) else 0
|
|
|
def f_inc_inv(x):
|
|
|
return (x - 1) % 2 if x in (0, 1) else 0
|
|
|
f_inc.inverse = f_inc_inv
|
|
|
|
|
|
def f_id(x):
|
|
|
return x
|
|
|
f_id.inverse = f_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_relator_returns_tuple():
|
|
|
kb = FractalKnowledgeBase()
|
|
|
ext = Extender(kb)
|
|
|
ok, rel = ext.relator.contextualizar([1,0,1], 'default')
|
|
|
assert isinstance(ok, bool)
|
|
|
assert ok is False and rel is None
|
|
|
|
|
|
|
|
|
|
|
|
import random
|
|
|
import time
|
|
|
import warnings
|
|
|
import copy
|
|
|
import math
|
|
|
from typing import List, Dict, Any, Tuple, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
Armonizador
|
|
|
===========
|
|
|
Complemento autosimilar para Aurora Trinity‑3 que afina
|
|
|
coherencia y corrige ambigüedades a tres escalones:
|
|
|
|
|
|
1. *Vector* – Micro‑ajusta las coordenadas Ss/Ms/MetaM.
|
|
|
2. *Regla* – Re‑encamina entradas en LUT / Knowledge‑Base.
|
|
|
3. *Valor* – Sintoniza parámetros globales (umbral, pesos…).
|
|
|
|
|
|
El módulo está pensado como *post‑hook* del `Extender`;
|
|
|
llámese después de cada reconstrucción para garantizar
|
|
|
consonancia.
|
|
|
"""
|
|
|
from typing import List, Tuple, Dict, Any, Optional
|
|
|
import itertools
|
|
|
import warnings
|
|
|
import logging
|
|
|
|
|
|
|
|
|
logger = logging.getLogger("aurora.arq")
|
|
|
if not logger.hasHandlers():
|
|
|
handler = logging.StreamHandler()
|
|
|
formatter = logging.Formatter('[%(levelname)s][%(stage)s][ambig=%(ambiguity)s] %(message)s')
|
|
|
handler.setFormatter(formatter)
|
|
|
logger.addHandler(handler)
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
Vector = List[Optional[int]]
|
|
|
|
|
|
class AmbiguityScore(int):
|
|
|
"""Int sub‑class → permite añadir meta‑datos si hiciera falta."""
|
|
|
pass
|
|
|
|
|
|
class Armonizador:
|
|
|
"""Afinador jerárquico que aplica **MicroShift → RegRewire → MetaTune**."""
|
|
|
|
|
|
def __init__(self, knowledge_base=None, *,
|
|
|
tau_1: int = 1, tau_2: int = 2, tau_3: int = 3):
|
|
|
self.kb = knowledge_base
|
|
|
self.tau_1, self.tau_2, self.tau_3 = tau_1, tau_2, tau_3
|
|
|
|
|
|
@staticmethod
|
|
|
def ambiguity_score(t: Vector, a: Vector) -> AmbiguityScore:
|
|
|
"""Suma de diferencias ternarias *ignorando* `None`."""
|
|
|
if len(t) != len(a):
|
|
|
raise ValueError("Vector size mismatch in ambiguity check")
|
|
|
score = 0
|
|
|
for x, y in zip(t, a):
|
|
|
if x is None or y is None:
|
|
|
score += 1
|
|
|
elif x != y:
|
|
|
score += 1
|
|
|
return AmbiguityScore(score)
|
|
|
|
|
|
_neighbor_mask_cache = {}
|
|
|
def _microshift(self, vec: Vector, archetype: Vector) -> Vector:
|
|
|
"""
|
|
|
Microshift recursivo con poda inteligente y logging estructurado.
|
|
|
Explora vecinos ternarios de vec, buscando el de menor ambigüedad respecto a archetype.
|
|
|
Early exit si score==0. Usa un set para evitar repeticiones.
|
|
|
Cachea los masks de vecinos por longitud y solo explora ±1 donde hay NULLs.
|
|
|
"""
|
|
|
seen = set()
|
|
|
best = vec
|
|
|
best_score = self.ambiguity_score(vec, archetype)
|
|
|
|
|
|
def neighbor_masks(length):
|
|
|
if length not in self._neighbor_mask_cache:
|
|
|
masks = []
|
|
|
for i in range(length):
|
|
|
mask = [0]*length
|
|
|
mask[i] = 1
|
|
|
masks.append(mask)
|
|
|
self._neighbor_mask_cache[length] = masks
|
|
|
return self._neighbor_mask_cache[length]
|
|
|
|
|
|
def dfs(v):
|
|
|
nonlocal best, best_score
|
|
|
v_tuple = tuple(v)
|
|
|
if v_tuple in seen:
|
|
|
return
|
|
|
seen.add(v_tuple)
|
|
|
score = self.ambiguity_score(v, archetype)
|
|
|
logger.debug(f"Vecino: {v} | Score: {score}", extra={'stage':'microshift','ambiguity':score})
|
|
|
if score < best_score:
|
|
|
best, best_score = v.copy(), score
|
|
|
if best_score == 0:
|
|
|
return
|
|
|
|
|
|
for i in range(len(v)):
|
|
|
if v[i] is not None:
|
|
|
continue
|
|
|
for delta in (-1, 1):
|
|
|
nv = v.copy()
|
|
|
nv[i] = 0 if delta == -1 else 1
|
|
|
dfs(nv)
|
|
|
|
|
|
dfs(list(vec))
|
|
|
logger.info(f"Microshift final: {best} | Score: {best_score}", extra={'stage':'microshift','ambiguity':best_score})
|
|
|
return best
|
|
|
|
|
|
def _regrewire(self, vec: Vector, space_id: str = "default") -> Vector:
|
|
|
"""Busca todos los arquetipos candidatos y selecciona el más cercano por ambigüedad (nivel_3[0])."""
|
|
|
if self.kb is None:
|
|
|
return vec
|
|
|
matches = self.kb._get_space(space_id).find_archetype_by_ms(vec)
|
|
|
if matches:
|
|
|
best_entry = min(matches, key=lambda e: self.ambiguity_score(vec, e.nivel_3[0]))
|
|
|
return best_entry.nivel_3[0]
|
|
|
return vec
|
|
|
|
|
|
def _metatune(self, vec: Vector) -> Vector:
|
|
|
"""Ajuste grosero: si continúa ambigüedad, aplica heurística φ."""
|
|
|
phi = (1 + 5 ** 0.5) / 2
|
|
|
tuned = []
|
|
|
for v in vec:
|
|
|
if v is None:
|
|
|
tuned.append(None)
|
|
|
else:
|
|
|
tuned.append(int(round(v / phi)) % 2)
|
|
|
return tuned
|
|
|
|
|
|
def harmonize(self, tensor: Vector, *, archetype: Vector | None = None,
|
|
|
space_id: str = "default") -> Dict[str, Any]:
|
|
|
"""Afinado completo. Devuelve dict con info para tracing."""
|
|
|
if archetype is None:
|
|
|
if self.kb is not None:
|
|
|
entries = self.kb._get_space(space_id).find_archetype_by_ms(tensor)
|
|
|
if entries:
|
|
|
if isinstance(entries, list):
|
|
|
archetype = entries[0].nivel_3[0]
|
|
|
elif hasattr(entries, 'nivel_3'):
|
|
|
archetype = entries.nivel_3[0]
|
|
|
archetype = archetype or tensor
|
|
|
|
|
|
vec_step1 = self._microshift(tensor, archetype)
|
|
|
score1 = self.ambiguity_score(vec_step1, archetype)
|
|
|
if score1 <= self.tau_1:
|
|
|
return {
|
|
|
"output": vec_step1,
|
|
|
"stage": "vector",
|
|
|
"ambiguity": int(score1),
|
|
|
}
|
|
|
|
|
|
vec_step2 = self._regrewire(vec_step1, space_id=space_id)
|
|
|
score2 = self.ambiguity_score(vec_step2, archetype)
|
|
|
if score2 <= self.tau_2:
|
|
|
return {
|
|
|
"output": vec_step2,
|
|
|
"stage": "regla",
|
|
|
"ambiguity": int(score2),
|
|
|
}
|
|
|
|
|
|
vec_step3 = self._metatune(vec_step2)
|
|
|
score3 = self.ambiguity_score(vec_step3, archetype)
|
|
|
if score3 <= self.tau_3:
|
|
|
stage = "valor"
|
|
|
else:
|
|
|
stage = "falla_critica"
|
|
|
warnings.warn("Armonizador: falla crítica – no se pudo reducir ambigüedad")
|
|
|
return {
|
|
|
"output": vec_step3,
|
|
|
"stage": stage,
|
|
|
"ambiguity": int(score3),
|
|
|
}
|
|
|
'''
|
|
|
Muy imporante:
|
|
|
|
|
|
Principios que se deben aplicar para el desarrollo de esta libreria:
|
|
|
|
|
|
Simplicidad, el codigo nunca debe basar en cadenas larga de if and else. Tienes que ser elegante y en todo caso bascar soluciones recusivas.
|
|
|
Autosimilitud. El codigo debe buscar que todos los mecanimso de emergencia y aprendizaje de relgas sigan patrones similares en cada uno de sus componentes
|
|
|
Solucion inversa. El codigo de transcendiencia y extension debe tener la misma logica pero en direccion inversa.
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TernaryLogic:
|
|
|
"""
|
|
|
Lógica ternaria Aurora con manejo correcto de incertidumbre.
|
|
|
Implementa Honestidad Computacional propagando NULL apropiadamente.
|
|
|
"""
|
|
|
NULL = None
|
|
|
|
|
|
@staticmethod
|
|
|
def ternary_xor(a: Optional[int], b: Optional[int]) -> Optional[int]:
|
|
|
"""XOR ternario con propagación de NULL."""
|
|
|
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
|
|
return TernaryLogic.NULL
|
|
|
return a ^ b
|
|
|
|
|
|
@staticmethod
|
|
|
def ternary_xnor(a: Optional[int], b: Optional[int]) -> Optional[int]:
|
|
|
"""XNOR ternario con propagación de NULL."""
|
|
|
if a is TernaryLogic.NULL or b is TernaryLogic.NULL:
|
|
|
return TernaryLogic.NULL
|
|
|
return 1 if a == b else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transcender:
|
|
|
def relate_vectors(self, A: list, B: list, context: dict = None) -> list:
|
|
|
"""
|
|
|
Calcula un vector de relación Aurora-native entre A y B, incorporando ventana de contexto y relaciones cruzadas si se proveen.
|
|
|
"""
|
|
|
if len(A) != len(B):
|
|
|
return [0, 0, 0]
|
|
|
diff_vector = []
|
|
|
for i in range(len(A)):
|
|
|
a_val = A[i] if A[i] is not None else 0
|
|
|
b_val = B[i] if B[i] is not None else 0
|
|
|
diff = b_val - a_val
|
|
|
|
|
|
if diff > 0:
|
|
|
diff_vector.append(1)
|
|
|
elif diff == 0:
|
|
|
diff_vector.append(0)
|
|
|
else:
|
|
|
diff_vector.append(None)
|
|
|
|
|
|
|
|
|
if context and 'prev' in context and 'next' in context:
|
|
|
v_prev = context['prev']
|
|
|
v_next = context['next']
|
|
|
rel_cross = []
|
|
|
for vp, vn in zip(v_prev, v_next):
|
|
|
vp_val = vp if vp is not None else 0
|
|
|
vn_val = vn if vn is not None else 0
|
|
|
diff_cross = vp_val - vn_val
|
|
|
if diff_cross > 0:
|
|
|
rel_cross.append(1)
|
|
|
elif diff_cross == 0:
|
|
|
rel_cross.append(0)
|
|
|
else:
|
|
|
rel_cross.append(None)
|
|
|
|
|
|
return list(diff_vector) + list(rel_cross) + list(A) + list(B)
|
|
|
return diff_vector
|
|
|
"""
|
|
|
Componente de síntesis que implementa la síntesis jerárquica
|
|
|
de Tensores Fractales completos.
|
|
|
"""
|
|
|
def __init__(self, fractal_vector: Optional[List[int]] = None):
|
|
|
self.trigate = Trigate()
|
|
|
|
|
|
|
|
|
self.seed_vector = fractal_vector
|
|
|
|
|
|
def compute_vector_trio(self, A: List[int], B: List[int], C: List[int]) -> Dict[str, Any]:
|
|
|
"""Procesa un trío de vectores simples (operación base)."""
|
|
|
M_AB, _ = self.trigate.synthesize(A, B)
|
|
|
M_BC, _ = self.trigate.synthesize(B, C)
|
|
|
M_CA, _ = self.trigate.synthesize(C, A)
|
|
|
M_emergent, _ = self.trigate.synthesize(M_AB, M_BC)
|
|
|
M_intermediate, _ = self.trigate.synthesize(M_emergent, M_CA)
|
|
|
MetaM = [TernaryLogic.ternary_xor(a, b) for a, b in zip(M_intermediate, M_emergent)]
|
|
|
return {'M_emergent': M_emergent, 'MetaM': MetaM}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def deep_learning(
|
|
|
self,
|
|
|
A: List[int],
|
|
|
B: List[int],
|
|
|
C: List[int],
|
|
|
M_emergent: Optional[List[int]] = None
|
|
|
) -> Dict[str, Any]:
|
|
|
"""
|
|
|
• Calcula M_emergent y MetaM tal como exige el modelo Trinity-3.
|
|
|
• Genera R_hipotesis = Trigate.infer(A, B, M_emergent).
|
|
|
• Devuelve un diccionario con claves que los tests integrales esperan.
|
|
|
"""
|
|
|
trio = self.compute_vector_trio(A, B, C)
|
|
|
|
|
|
|
|
|
if M_emergent is None:
|
|
|
M_emergent = trio["M_emergent"]
|
|
|
|
|
|
R_hipotesis = self.trigate.infer(A, B, M_emergent)
|
|
|
|
|
|
return {
|
|
|
"M_emergent": M_emergent,
|
|
|
"MetaM": trio["MetaM"],
|
|
|
"R_hipotesis": R_hipotesis,
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def compute_full_fractal(self, A: 'FractalTensor', B: 'FractalTensor', C: 'FractalTensor') -> 'FractalTensor':
|
|
|
"""
|
|
|
Sintetiza tres tensores fractales en uno, de manera jerárquica y elegante.
|
|
|
Prioriza una raíz de entrada válida por encima de la síntesis.
|
|
|
"""
|
|
|
out = FractalTensor.neutral()
|
|
|
|
|
|
def synthesize_trio(vectors: list) -> list:
|
|
|
|
|
|
while len(vectors) < 3:
|
|
|
vectors.append([0, 0, 0])
|
|
|
trimmed = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in vectors[:3]]
|
|
|
r = self.compute_vector_trio(*trimmed)
|
|
|
m_emergent = r.get('M_emergent', [0, 0, 0])
|
|
|
return [bit if bit is not None else 0 for bit in m_emergent[:3]]
|
|
|
|
|
|
inter_from_27 = []
|
|
|
for i in range(27):
|
|
|
context = {'prev': A.nivel_27[i - 1] if i > 0 else [0,0,0], 'next': A.nivel_27[i + 1] if i < 26 else [0,0,0]}
|
|
|
enriched_a = self.relate_vectors(A.nivel_27[i], B.nivel_27[i], context)[:3]
|
|
|
enriched_b = self.relate_vectors(B.nivel_27[i], C.nivel_27[i], context)[:3]
|
|
|
enriched_c = self.relate_vectors(C.nivel_27[i], A.nivel_27[i], context)[:3]
|
|
|
inter_from_27.append(synthesize_trio([enriched_a, enriched_b, enriched_c]))
|
|
|
out.nivel_27 = inter_from_27
|
|
|
|
|
|
inter_from_9 = [synthesize_trio(inter_from_27[i:i+3]) for i in range(0, 27, 3)]
|
|
|
out.nivel_9 = inter_from_9
|
|
|
out.nivel_3 = [synthesize_trio(inter_from_9[i:i+3]) for i in range(0, 9, 3)]
|
|
|
|
|
|
|
|
|
out.nivel_3 = [v[:3] if isinstance(v, (list, tuple)) else [0,0,0] for v in out.nivel_3]
|
|
|
|
|
|
input_roots = [t.nivel_3[0] for t in (A, B, C) if hasattr(t, 'nivel_3') and t.nivel_3 and t.nivel_3[0] and len(t.nivel_3[0]) == 3]
|
|
|
valid_roots = [r for r in input_roots if all(bit is not None for bit in r)]
|
|
|
if valid_roots:
|
|
|
final_root = [0, 0, 0]
|
|
|
for i in range(3):
|
|
|
votes = [r[i] for r in valid_roots]
|
|
|
final_root[i] = 1 if votes.count(1) > votes.count(0) else 0
|
|
|
out.nivel_3[0] = final_root
|
|
|
out.Ms = final_root
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FractalTensor:
|
|
|
"""
|
|
|
Representa un tensor fractal con 3 niveles de profundidad (3, 9, 27).
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
nivel_3=None,
|
|
|
nivel_9=None,
|
|
|
nivel_27=None,
|
|
|
*,
|
|
|
Ms=None,
|
|
|
Ss=None,
|
|
|
dMs=None
|
|
|
):
|
|
|
def norm3(v):
|
|
|
|
|
|
if not isinstance(v, (list, tuple)):
|
|
|
return [0, 0, 0]
|
|
|
return [(0 if x is None else int(x) if x in (0, 1) else 0) for x in list(v)[:3]] + [0] * (3 - len(v))
|
|
|
|
|
|
def expand_nivel_3(n3):
|
|
|
|
|
|
if not isinstance(n3, (list, tuple)) or len(n3) == 0:
|
|
|
return [[0, 0, 0] for _ in range(3)]
|
|
|
if len(n3) == 1 and isinstance(n3[0], (list, tuple)) and len(n3[0]) == 3:
|
|
|
|
|
|
return [list(n3[0]) for _ in range(3)]
|
|
|
return [norm3(v) for v in list(n3)[:3]] + [[0, 0, 0]] * (3 - len(n3))
|
|
|
|
|
|
def expand_nivel_9(n9):
|
|
|
|
|
|
if not isinstance(n9, (list, tuple)) or len(n9) == 0:
|
|
|
return [[0, 0, 0] for _ in range(9)]
|
|
|
|
|
|
if len(n9) == 1 and isinstance(n9[0], (list, tuple)) and len(n9[0]) == 3:
|
|
|
return [list(n9[0]) for _ in range(9)]
|
|
|
return [norm3(v) for v in list(n9)[:9]] + [[0, 0, 0]] * (9 - len(n9))
|
|
|
|
|
|
def expand_nivel_27(n27):
|
|
|
|
|
|
if not isinstance(n27, (list, tuple)) or len(n27) == 0:
|
|
|
return [[0, 0, 0] for _ in range(27)]
|
|
|
if len(n27) == 1 and isinstance(n27[0], (list, tuple)) and len(n27[0]) == 3:
|
|
|
return [list(n27[0]) for _ in range(27)]
|
|
|
return [norm3(v) for v in list(n27)[:27]] + [[0, 0, 0]] * (27 - len(n27))
|
|
|
|
|
|
|
|
|
if nivel_3 is not None and (nivel_9 is None and nivel_27 is None):
|
|
|
n3 = expand_nivel_3(nivel_3)
|
|
|
n9 = [list(n3[i // 3]) for i in range(9)]
|
|
|
n27 = [list(n3[i // 9]) for i in range(27)]
|
|
|
elif nivel_9 is not None and nivel_27 is None:
|
|
|
n9 = expand_nivel_9(nivel_9)
|
|
|
n3 = [list(n9[i * 3]) for i in range(3)]
|
|
|
n27 = [list(n9[i // 3]) for i in range(27)]
|
|
|
elif nivel_27 is not None:
|
|
|
n27 = expand_nivel_27(nivel_27)
|
|
|
n9 = [list(n27[i * 3]) for i in range(9)]
|
|
|
n3 = [list(n27[i * 9]) for i in range(3)]
|
|
|
else:
|
|
|
n3 = expand_nivel_3(nivel_3)
|
|
|
n9 = expand_nivel_9(nivel_9)
|
|
|
n27 = expand_nivel_27(nivel_27)
|
|
|
|
|
|
self.nivel_3 = n3
|
|
|
self.nivel_9 = n9
|
|
|
self.nivel_27 = n27
|
|
|
|
|
|
self.Ms = Ms if Ms is not None else (self.nivel_3[0] if self.nivel_3 and isinstance(self.nivel_3[0], (list, tuple)) and len(self.nivel_3[0]) == 3 else [0,0,0])
|
|
|
self.Ss = Ss
|
|
|
self.dMs = dMs
|
|
|
|
|
|
@staticmethod
|
|
|
def random():
|
|
|
"""Crea un FractalTensor aleatorio."""
|
|
|
rand_vec = lambda: [random.choice([0, 1]) for _ in range(3)]
|
|
|
return FractalTensor(
|
|
|
nivel_3=[rand_vec() for _ in range(3)],
|
|
|
nivel_9=[rand_vec() for _ in range(9)],
|
|
|
nivel_27=[rand_vec() for _ in range(27)]
|
|
|
)
|
|
|
|
|
|
@staticmethod
|
|
|
def neutral():
|
|
|
"""Crea un FractalTensor neutro (ceros)."""
|
|
|
zero_vec = lambda: [0, 0, 0]
|
|
|
return FractalTensor(
|
|
|
nivel_3=[zero_vec() for _ in range(3)],
|
|
|
nivel_9=[zero_vec() for _ in range(9)],
|
|
|
nivel_27=[zero_vec() for _ in range(27)]
|
|
|
)
|
|
|
|
|
|
def __repr__(self):
|
|
|
def short(vs):
|
|
|
return vs[:2] + ['...'] if len(vs) > 2 else vs
|
|
|
return (f"FT(root={self.nivel_3}, "
|
|
|
f"mid={short(self.nivel_9)}, "
|
|
|
f"detail={short(self.nivel_27)})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Evolver:
|
|
|
"""
|
|
|
Motor de visión fractal unificada para Arquetipos, Dinámicas y Relatores.
|
|
|
"""
|
|
|
def __init__(self):
|
|
|
self.base_transcender = Transcender()
|
|
|
|
|
|
def _perform_full_tensor_synthesis(self, tensors: List["FractalTensor"]) -> "FractalTensor":
|
|
|
"""
|
|
|
Motor de síntesis fractal: reduce una lista de tensores a uno solo.
|
|
|
"""
|
|
|
if not tensors:
|
|
|
return FractalTensor.neutral()
|
|
|
|
|
|
current_level_tensors = list(tensors)
|
|
|
while len(current_level_tensors) > 1:
|
|
|
next_level_tensors = []
|
|
|
for i in range(0, len(current_level_tensors), 3):
|
|
|
trio = current_level_tensors[i:i+3]
|
|
|
while len(trio) < 3:
|
|
|
trio.append(FractalTensor.neutral())
|
|
|
synthesized_tensor = self.base_transcender.compute_full_fractal(*trio)
|
|
|
next_level_tensors.append(synthesized_tensor)
|
|
|
current_level_tensors = next_level_tensors
|
|
|
|
|
|
return current_level_tensors[0]
|
|
|
|
|
|
def compute_fractal_archetype(self, tensor_family: List["FractalTensor"]) -> "FractalTensor":
|
|
|
"""Perspectiva de ARQUETIPO: Destila la esencia de una familia de conceptos."""
|
|
|
if len(tensor_family) < 2:
|
|
|
warnings.warn("Se requieren al menos 2 tensores para computar un arquetipo.")
|
|
|
return FractalTensor.neutral() if not tensor_family else tensor_family[0]
|
|
|
return self._perform_full_tensor_synthesis(tensor_family)
|
|
|
|
|
|
def analyze_fractal_dynamics(
|
|
|
self,
|
|
|
temporal_sequence: List["FractalTensor"]
|
|
|
) -> "FractalTensor":
|
|
|
"""
|
|
|
Perspectiva de DINÁMICA: Sintetiza el patrón de evolución de una secuencia
|
|
|
y calcula el gradiente lógico dMs = Ms_fin XOR Ms_ini.
|
|
|
"""
|
|
|
if len(temporal_sequence) < 2:
|
|
|
warnings.warn(
|
|
|
"Se requiere una secuencia de al menos 2 tensores para analizar dinámicas."
|
|
|
)
|
|
|
return (
|
|
|
FractalTensor.neutral()
|
|
|
if not temporal_sequence
|
|
|
else temporal_sequence[0]
|
|
|
)
|
|
|
|
|
|
|
|
|
tensor_dyn = self._perform_full_tensor_synthesis(temporal_sequence)
|
|
|
|
|
|
|
|
|
Ms_ini = temporal_sequence[0].Ms or temporal_sequence[0].nivel_3[0]
|
|
|
Ms_fin = temporal_sequence[-1].Ms or temporal_sequence[-1].nivel_3[0]
|
|
|
dMs = [a ^ b for a, b in zip(Ms_ini, Ms_fin)]
|
|
|
|
|
|
tensor_dyn.dMs = dMs
|
|
|
tensor_dyn.Ms = Ms_fin
|
|
|
tensor_dyn.nivel_3[0] = Ms_fin
|
|
|
|
|
|
return tensor_dyn
|
|
|
|
|
|
def analyze_fractal_relations(self, contextual_cluster: List["FractalTensor"]) -> "FractalTensor":
|
|
|
"""Perspectiva de RELATOR: Obtiene el mapa conceptual de un clúster."""
|
|
|
if len(contextual_cluster) < 2:
|
|
|
warnings.warn("Se requieren al menos 2 tensores para el análisis relacional.")
|
|
|
return FractalTensor.neutral() if not contextual_cluster else contextual_cluster[0]
|
|
|
return self._perform_full_tensor_synthesis(contextual_cluster)
|
|
|
|
|
|
@staticmethod
|
|
|
def fractal_relate(tensor_group: List["FractalTensor"], level: int = 27) -> Optional[List[List[Optional[int]]]]:
|
|
|
"""
|
|
|
Calcula una firma relacional por mayoría de votos entre un grupo de tensores.
|
|
|
"""
|
|
|
if not tensor_group:
|
|
|
return None
|
|
|
|
|
|
|
|
|
try:
|
|
|
dim_vectors = [getattr(t, f'nivel_{level}') for t in tensor_group]
|
|
|
except AttributeError:
|
|
|
raise ValueError(f"El nivel {level} no es válido. Debe ser 3, 9 o 27.")
|
|
|
|
|
|
num_vectors = len(dim_vectors[0])
|
|
|
signature = []
|
|
|
for pos in range(num_vectors):
|
|
|
bit_result = []
|
|
|
for bit in range(3):
|
|
|
bit_vals = [t[pos][bit] for t in dim_vectors if t and t[pos] and t[pos][bit] is not None]
|
|
|
if not bit_vals:
|
|
|
bit_result.append(None)
|
|
|
continue
|
|
|
|
|
|
|
|
|
count_1 = bit_vals.count(1)
|
|
|
count_0 = bit_vals.count(0)
|
|
|
if count_1 > count_0: bit_result.append(1)
|
|
|
elif count_0 > count_1: bit_result.append(0)
|
|
|
else: bit_result.append(None)
|
|
|
signature.append(bit_result)
|
|
|
return signature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _SingleUniverseKB:
|
|
|
"""Gestiona el conocimiento de un único espacio lógico (universo)."""
|
|
|
def __init__(self):
|
|
|
self.archetypes = []
|
|
|
self.ms_index = {}
|
|
|
self.name_index = {}
|
|
|
self.coherence_violations = 0
|
|
|
self.ss_index = {}
|
|
|
self.models = {}
|
|
|
|
|
|
def store_model(self, model_name: str, model_data: dict):
|
|
|
"""Almacena un modelo de decisión genérico en este universo."""
|
|
|
self.models[model_name] = model_data
|
|
|
return True
|
|
|
|
|
|
def get_model(self, model_name: str) -> Optional[dict]:
|
|
|
"""Recupera un modelo de decisión."""
|
|
|
return self.models.get(model_name)
|
|
|
|
|
|
def add_archetype(self, archetype_tensor: "FractalTensor", Ss: List[int], name: Optional[str] = None, **kwargs) -> bool:
|
|
|
"""Añade un arquetipo (Tensor Fractal) al universo, almacenando Ss (memoria factual)."""
|
|
|
if not isinstance(archetype_tensor, FractalTensor):
|
|
|
raise ValueError("La entrada debe ser un objeto FractalTensor.")
|
|
|
|
|
|
ms_key = tuple(int(0 if x is None else x) for x in archetype_tensor.nivel_3[0][:3])
|
|
|
|
|
|
ss_source = Ss
|
|
|
if isinstance(Ss, list) and len(Ss) > 0 and isinstance(Ss[0], list):
|
|
|
ss_source = Ss[0]
|
|
|
ss_key = tuple(int(0 if x is None else x) for x in (ss_source[:3] if ss_source else archetype_tensor.nivel_3[0][:3]))
|
|
|
|
|
|
if name and name in self.name_index:
|
|
|
warnings.warn(f"Violación de Coherencia: Ya existe un arquetipo con el nombre '{name}'. No se añadió el nuevo.")
|
|
|
self.coherence_violations += 1
|
|
|
return False
|
|
|
metadata = kwargs.copy()
|
|
|
if name: metadata['name'] = name
|
|
|
setattr(archetype_tensor, 'metadata', metadata)
|
|
|
setattr(archetype_tensor, 'timestamp', time.time())
|
|
|
setattr(archetype_tensor, 'Ss', list(ss_key))
|
|
|
self.archetypes.append(archetype_tensor)
|
|
|
if ms_key not in self.ms_index:
|
|
|
self.ms_index[ms_key] = []
|
|
|
self.ms_index[ms_key].append(archetype_tensor)
|
|
|
if ss_key not in self.ss_index:
|
|
|
self.ss_index[ss_key] = []
|
|
|
self.ss_index[ss_key].append(archetype_tensor)
|
|
|
if name: self.name_index[name] = archetype_tensor
|
|
|
return True
|
|
|
|
|
|
def find_archetype_by_ms(self, Ms_query: List[int]) -> list:
|
|
|
"""Busca arquetipos por su clave Ms (vector raíz, normalizado a 3 ints). Devuelve siempre lista."""
|
|
|
res = self.ms_index.get(tuple(Ms_query[:3]))
|
|
|
if res is None:
|
|
|
return []
|
|
|
if isinstance(res, list):
|
|
|
return res
|
|
|
return [res]
|
|
|
|
|
|
def find_archetype_by_ss(self, Ss_query: List[int]) -> list:
|
|
|
"""Busca arquetipos por su clave Ss (memoria factual, normalizado a 3 ints). Devuelve siempre lista."""
|
|
|
res = self.ss_index.get(tuple(Ss_query[:3]))
|
|
|
if res is None:
|
|
|
return []
|
|
|
if isinstance(res, list):
|
|
|
return res
|
|
|
return [res]
|
|
|
|
|
|
def find_archetype_by_name(self, name: str) -> Optional["FractalTensor"]:
|
|
|
"""Busca un arquetipo por su nombre asignado."""
|
|
|
return self.name_index.get(name)
|
|
|
|
|
|
def register_patch(self, ms_key, ttl=10_000):
|
|
|
"""Registra un parche temporal para un vector raíz con TTL."""
|
|
|
if not hasattr(self, '_patches'):
|
|
|
self._patches = {}
|
|
|
self._patches[tuple(ms_key)] = {'ttl': ttl, 'timestamp': time.time()}
|
|
|
|
|
|
def supersede_axiom(self, ms_key, new_axiom):
|
|
|
"""Reemplaza el axioma raíz y versiona el anterior."""
|
|
|
if not hasattr(self, '_axiom_versions'):
|
|
|
self._axiom_versions = {}
|
|
|
old = self.ms_index.get(tuple(ms_key))
|
|
|
if old:
|
|
|
self._axiom_versions[tuple(ms_key)] = old
|
|
|
self.ms_index[tuple(ms_key)] = new_axiom
|
|
|
|
|
|
for i, t in enumerate(self.archetypes):
|
|
|
if t.nivel_3[0] == list(ms_key):
|
|
|
self.archetypes[i] = new_axiom
|
|
|
break
|
|
|
|
|
|
class FractalKnowledgeBase:
|
|
|
def add_archetype(self, space_id: str, name: str, archetype_tensor: "FractalTensor", Ss: list, **kwargs) -> bool:
|
|
|
"""Delegado: añade un arquetipo fractal al universo correcto."""
|
|
|
return self._get_space(space_id).add_archetype(archetype_tensor, Ss, name=name, **kwargs)
|
|
|
|
|
|
def get_archetype(self, space_id: str, name: str) -> Optional["FractalTensor"]:
|
|
|
"""Obtiene un arquetipo por space_id y nombre."""
|
|
|
return self._get_space(space_id).find_archetype_by_name(name)
|
|
|
|
|
|
def store_model(self, space_id: str, model_name: str, model_data: dict):
|
|
|
return self._get_space(space_id).store_model(model_name, model_data)
|
|
|
|
|
|
def get_model(self, space_id: str, model_name: str):
|
|
|
return self._get_space(space_id).get_model(model_name)
|
|
|
"""Gestor de múltiples universos de conocimiento fractal."""
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
self.universes = {}
|
|
|
|
|
|
def _get_space(self, space_id: str = 'default'):
|
|
|
if space_id not in self.universes:
|
|
|
self.universes[space_id] = _SingleUniverseKB()
|
|
|
return self.universes[space_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InverseEvolver:
|
|
|
def __init__(self):
|
|
|
self.trigate = Trigate()
|
|
|
|
|
|
def infer_inputs_from_meta(self, Ms: list, MetaM: list) -> list:
|
|
|
"""
|
|
|
Dado Ms (emergente) y MetaM, deduce M_AB, M_BC, M_CA compatibles.
|
|
|
"""
|
|
|
M_intermediate = [TernaryLogic.ternary_xor(m, mm) for m, mm in zip(Ms, MetaM)]
|
|
|
|
|
|
return [M_intermediate, M_intermediate, M_intermediate]
|
|
|
|
|
|
def reconstruct_vectors(self, Ms: list) -> tuple:
|
|
|
"""
|
|
|
Deduce todas las combinaciones posibles de A y B que generan Ms usando lógica inversa del Trigate.
|
|
|
Selecciona la combinación con menor cantidad de valores None.
|
|
|
"""
|
|
|
import itertools, warnings
|
|
|
if not isinstance(Ms, list) or len(Ms) != 3:
|
|
|
Ms = [0, 0, 0]
|
|
|
possible_pairs = []
|
|
|
states = [0, 1, None]
|
|
|
|
|
|
for a in itertools.product(states, repeat=3):
|
|
|
a = list(a)
|
|
|
|
|
|
b = [self.trigate._LUT_DEDUCE_B.get((a_i, 1, m), None) for a_i, m in zip(a, Ms)]
|
|
|
if all(x is not None for x in b):
|
|
|
none_count = a.count(None) + b.count(None)
|
|
|
possible_pairs.append((a, b, none_count))
|
|
|
if not possible_pairs:
|
|
|
warnings.warn("No se encontraron combinaciones válidas para Ms. Devolviendo valores neutros.")
|
|
|
return [0, 0, 0], [0, 0, 0]
|
|
|
|
|
|
best_pair = min(possible_pairs, key=lambda x: x[2])
|
|
|
return list(best_pair[0]), list(best_pair[1])
|
|
|
|
|
|
|
|
|
|
|
|
class Extender:
|
|
|
"""
|
|
|
Orquestador Aurora refactorizado con expertos como métodos internos para
|
|
|
simplificar el alcance y la gestión de estado.
|
|
|
|
|
|
Opera como de forma inversa a Evolver, extendiendo el conocimiento fractal
|
|
|
a partir de consultas simples y contexto, utilizando expertos para validar,
|
|
|
utiliza trigate de form inversa al transcender.
|
|
|
"""
|
|
|
def __init__(self, knowledge_base: "FractalKnowledgeBase"):
|
|
|
self.kb = knowledge_base
|
|
|
self.transcender = Transcender()
|
|
|
self._lut_tables = {}
|
|
|
self.armonizador = Armonizador(knowledge_base=self.kb)
|
|
|
|
|
|
|
|
|
def _validate_archetype(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
ss_key = tuple(int(x) if x in (0, 1) else 0 for x in ss_query[:3])
|
|
|
print(f"DEBUG: Looking up archetype with ss_key={ss_key} in space={space_id}")
|
|
|
|
|
|
archi_ss = universe.find_archetype_by_ss(list(ss_key))
|
|
|
if archi_ss:
|
|
|
print(f"DEBUG: Found archetype by Ss: {archi_ss}")
|
|
|
return True, archi_ss
|
|
|
|
|
|
archi_ms = universe.find_archetype_by_ms(list(ss_key))
|
|
|
if archi_ms:
|
|
|
print(f"DEBUG: Found archetype by Ms: {archi_ms}")
|
|
|
return True, archi_ms
|
|
|
print("DEBUG: No archetype found")
|
|
|
return False, None
|
|
|
|
|
|
|
|
|
def _project_dynamics(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
best, best_sim = None, -1.0
|
|
|
for archetype in universe.archetypes:
|
|
|
dMs = getattr(archetype, 'dMs', None)
|
|
|
if dMs and getattr(archetype, 'Ss', None):
|
|
|
sim = sum(1 for a, b in zip(archetype.Ss, ss_query) if a == b) / len(ss_query)
|
|
|
if sim > best_sim:
|
|
|
best_sim, best = sim, archetype
|
|
|
if best and best_sim > 0.7:
|
|
|
return True, best
|
|
|
return False, None
|
|
|
|
|
|
|
|
|
def _contextualize_relations(self, ss_query: list, space_id: str) -> Tuple[bool, Optional['FractalTensor']]:
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
if not universe.archetypes:
|
|
|
print("DEBUG: No archetypes in universe")
|
|
|
return False, None
|
|
|
best, best_score = None, float('-inf')
|
|
|
for archetype in universe.archetypes:
|
|
|
if not getattr(archetype, 'Ss', None):
|
|
|
continue
|
|
|
rel = self.transcender.relate_vectors(ss_query, archetype.Ss)
|
|
|
score = sum(1 for bit in rel if bit == 0)
|
|
|
if score > best_score:
|
|
|
best_score, best = score, archetype
|
|
|
if best:
|
|
|
|
|
|
result = copy.deepcopy(best)
|
|
|
result.nivel_3[0] = list(ss_query[:3])
|
|
|
print(f"DEBUG: Contextualized with score={best_score}, root preserved={result.nivel_3[0]}")
|
|
|
return True, result
|
|
|
print("DEBUG: No relational match found")
|
|
|
return False, None
|
|
|
|
|
|
|
|
|
def extend_fractal(self, input_ss, contexto: dict) -> dict:
|
|
|
log = [f"Extensión Aurora: espacio '{contexto.get('space_id', 'default')}'"]
|
|
|
|
|
|
if isinstance(input_ss, FractalTensor):
|
|
|
ss_query = getattr(input_ss, 'Ss', input_ss.nivel_3[0])
|
|
|
else:
|
|
|
ss_query = input_ss
|
|
|
|
|
|
if not isinstance(ss_query, (list, tuple, np.ndarray)):
|
|
|
log.append("⚠️ Entrada inválida, usando vector neutro [0,0,0]")
|
|
|
ss_query = [0, 0, 0]
|
|
|
else:
|
|
|
ss_query = [
|
|
|
None if x is None else int(x) if x in (0, 1) else 0
|
|
|
for x in list(ss_query)[:3]
|
|
|
] + [0] * (3 - len(ss_query))
|
|
|
space_id = contexto.get('space_id', 'default')
|
|
|
STEPS = [
|
|
|
lambda q, s: (self.lookup_lut(s, q) is not None, self.lookup_lut(s, q)),
|
|
|
self._validate_archetype,
|
|
|
self._project_dynamics,
|
|
|
self._contextualize_relations
|
|
|
]
|
|
|
METHODS = [
|
|
|
"reconstrucción por LUT",
|
|
|
"reconstrucción por arquetipo (axioma)",
|
|
|
"proyección por dinámica (raíz preservada)",
|
|
|
"contextualización por relator (raíz preservada)"
|
|
|
]
|
|
|
for step, method in zip(STEPS, METHODS):
|
|
|
ok, tensor = step(ss_query, space_id)
|
|
|
if ok and tensor is not None:
|
|
|
log.append(f"✅ {method}.")
|
|
|
|
|
|
if isinstance(tensor, list):
|
|
|
armonizador = self.armonizador
|
|
|
tensor = min(tensor, key=lambda t: armonizador.ambiguity_score(ss_query, t.nivel_3[0]))
|
|
|
|
|
|
if method.startswith("proyección") or method.startswith("contextualización"):
|
|
|
result = copy.deepcopy(tensor)
|
|
|
result.nivel_3[0] = ss_query
|
|
|
root_vector = result.nivel_3[0]
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
result.nivel_3[0] = harm["output"]
|
|
|
return {
|
|
|
"reconstructed_tensor": result,
|
|
|
"reconstruction_method": method + " + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
tensor_c = copy.deepcopy(tensor)
|
|
|
root_vector = tensor_c.nivel_3[0]
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
tensor_c.nivel_3[0] = harm["output"]
|
|
|
return {
|
|
|
"reconstructed_tensor": tensor_c,
|
|
|
"reconstruction_method": method + " + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
|
|
|
log.append("🤷 No se encontraron coincidencias. Devolviendo tensor neutro.")
|
|
|
tensor_n = FractalTensor.neutral()
|
|
|
root_vector = tensor_n.nivel_3[0]
|
|
|
harm = self.armonizador.harmonize(root_vector, archetype=root_vector, space_id=space_id)
|
|
|
tensor_n.nivel_3[0] = harm["output"]
|
|
|
return {
|
|
|
"reconstructed_tensor": tensor_n,
|
|
|
"reconstruction_method": "tensor neutro (sin coincidencias) + armonizador",
|
|
|
"log": log
|
|
|
}
|
|
|
|
|
|
|
|
|
def lookup_lut(self, space_id: str, ss_query: list):
|
|
|
"""
|
|
|
Consulta la LUT para el espacio dado y la firma ss_query.
|
|
|
"""
|
|
|
lut = getattr(self, '_lut_tables', {}).get(space_id, None)
|
|
|
if lut is None:
|
|
|
return None
|
|
|
key = tuple(ss_query)
|
|
|
return lut.get(key, None)
|
|
|
|
|
|
def learn_lut_from_data(self, space_id: str, data: list):
|
|
|
"""
|
|
|
Aprende una LUT auto-didacta a partir de datos [(ss_query, tensor_result)].
|
|
|
Si hay conflicto, usa voto por mayoría.
|
|
|
"""
|
|
|
lut = {}
|
|
|
votes = {}
|
|
|
for ss_query, tensor_result in data:
|
|
|
|
|
|
if isinstance(ss_query, list) and len(ss_query) > 0 and isinstance(ss_query[0], list):
|
|
|
key = tuple(ss_query[0])
|
|
|
else:
|
|
|
key = tuple(ss_query)
|
|
|
if key not in votes:
|
|
|
votes[key] = []
|
|
|
votes[key].append(tensor_result)
|
|
|
|
|
|
for key, tensors in votes.items():
|
|
|
|
|
|
if len(tensors) == 1:
|
|
|
lut[key] = tensors[0]
|
|
|
else:
|
|
|
|
|
|
root_votes = [t.nivel_3[0] if hasattr(t, 'nivel_3') else t for t in tensors]
|
|
|
|
|
|
majority = []
|
|
|
for i in range(3):
|
|
|
vals = [rv[i] for rv in root_votes if rv and len(rv) > i]
|
|
|
if vals:
|
|
|
count_1 = vals.count(1)
|
|
|
count_0 = vals.count(0)
|
|
|
if count_1 > count_0:
|
|
|
majority.append(1)
|
|
|
elif count_0 > count_1:
|
|
|
majority.append(0)
|
|
|
else:
|
|
|
majority.append(None)
|
|
|
else:
|
|
|
majority.append(None)
|
|
|
|
|
|
tensor_majority = FractalTensor.neutral()
|
|
|
tensor_majority.nivel_3[0] = majority
|
|
|
lut[key] = tensor_majority
|
|
|
self.patch_lut(space_id, lut)
|
|
|
return lut
|
|
|
|
|
|
def patch_lut(self, space_id, lut):
|
|
|
"""Actualiza o crea la LUT para el espacio dado."""
|
|
|
if not hasattr(self, '_lut_tables') or self._lut_tables is None:
|
|
|
self._lut_tables = {}
|
|
|
self._lut_tables[space_id] = lut
|
|
|
|
|
|
def vote_candidates(self, candidates: list):
|
|
|
"""
|
|
|
Vota entre varios tensores candidatos y devuelve el tensor con mayoría en la raíz.
|
|
|
"""
|
|
|
if not candidates:
|
|
|
return FractalTensor.neutral()
|
|
|
root_votes = [c.nivel_3[0] if hasattr(c, 'nivel_3') else c for c in candidates]
|
|
|
majority = []
|
|
|
for i in range(3):
|
|
|
vals = [rv[i] for rv in root_votes if rv and len(rv) > i]
|
|
|
if vals:
|
|
|
count_1 = vals.count(1)
|
|
|
count_0 = vals.count(0)
|
|
|
if count_1 > count_0:
|
|
|
majority.append(1)
|
|
|
elif count_0 > count_1:
|
|
|
majority.append(0)
|
|
|
else:
|
|
|
majority.append(None)
|
|
|
else:
|
|
|
majority.append(None)
|
|
|
tensor_majority = FractalTensor.neutral()
|
|
|
tensor_majority.nivel_3[0] = majority
|
|
|
return tensor_majority
|
|
|
|
|
|
|
|
|
class ExpertArquetipo:
|
|
|
def __init__(self, kb):
|
|
|
self.kb = kb
|
|
|
def validar_axioma(self, ss_query, space_id):
|
|
|
"""
|
|
|
Valida si existe un axioma. Es más robusto:
|
|
|
1. Busca por Ss (memoria factual) en ss_index.
|
|
|
2. Si falla, busca por Ms (raíz) en ms_index.
|
|
|
"""
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
|
|
|
ss_query_fixed = tuple(int(0 if x is None else x) for x in ss_query[:3])
|
|
|
|
|
|
exact_match_list = universe.ss_index.get(ss_query_fixed)
|
|
|
if exact_match_list:
|
|
|
return True, exact_match_list[0]
|
|
|
|
|
|
exact_by_ms = universe.find_archetype_by_ms(list(ss_query_fixed))
|
|
|
if exact_by_ms:
|
|
|
return True, exact_by_ms
|
|
|
return False, None
|
|
|
|
|
|
class ExpertDinamica:
|
|
|
def __init__(self, kb):
|
|
|
self.kb = kb
|
|
|
def proyectar_dinamica(self, ss_query, space_id):
|
|
|
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
best, best_sim = None, 0.0
|
|
|
for archetype in universe.archetypes:
|
|
|
dMs = getattr(archetype, 'dMs', None)
|
|
|
if dMs:
|
|
|
sim = sum(1 for a, b in zip(getattr(archetype, 'Ss', []), ss_query) if a == b) / len(ss_query)
|
|
|
if sim > best_sim:
|
|
|
best_sim, best = sim, archetype
|
|
|
if best and best_sim > 0.7:
|
|
|
return True, best
|
|
|
return False, None
|
|
|
|
|
|
class ExpertRelator:
|
|
|
def __init__(self, kb):
|
|
|
self.kb = kb
|
|
|
self.transcender = Transcender()
|
|
|
def contextualizar(self, ss_query, space_id):
|
|
|
|
|
|
universe = self.kb._get_space(space_id)
|
|
|
best, best_score = None, float('-inf')
|
|
|
for archetype in universe.archetypes:
|
|
|
rel = self.transcender.relate_vectors(ss_query, getattr(archetype, 'Ss', [0,0,0]))
|
|
|
score = -sum(abs(x) if x is not None else 0 for x in rel)
|
|
|
if score > best_score:
|
|
|
best_score, best = score, archetype
|
|
|
if best:
|
|
|
return True, best
|
|
|
return False, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PHI = (1 + 5**0.5) / 2
|
|
|
PHI_INVERSE = 1 / PHI
|
|
|
|
|
|
class TensorRotor:
|
|
|
"""Genera secuencias de índices para la selección de tensores."""
|
|
|
def __init__(self, N: int, mode: str = "hybrid", start_k: int = 0):
|
|
|
self.N = max(1, N)
|
|
|
self.k = start_k % self.N
|
|
|
self.i = 0
|
|
|
self.mode = mode
|
|
|
self.phi_step = max(1, round(PHI_INVERSE * self.N))
|
|
|
self.fib_cache = {n: self._fib(n) for n in range(16)}
|
|
|
|
|
|
def _fib(self, n: int) -> int:
|
|
|
if n <= 1: return 1
|
|
|
a, b = 1, 1
|
|
|
for _ in range(2, n + 1): a, b = b, a + b
|
|
|
return b
|
|
|
|
|
|
def next(self) -> int:
|
|
|
"""Calcula el siguiente índice según la estrategia de rotación."""
|
|
|
if self.mode == "phi":
|
|
|
self.k = (self.k + self.phi_step) % self.N
|
|
|
elif self.mode == "fibonacci":
|
|
|
fib_step = self.fib_cache[self.i % 16]
|
|
|
self.k = (self.k + fib_step) % self.N
|
|
|
else:
|
|
|
if self.i % 2 == 0:
|
|
|
self.k = (self.k + self.phi_step) % self.N
|
|
|
else:
|
|
|
fib_step = self.fib_cache[(self.i // 2) % 16]
|
|
|
self.k = (self.k + fib_step) % self.N
|
|
|
self.i += 1
|
|
|
return self.k
|
|
|
|
|
|
class TensorPoolManager:
|
|
|
"""Gestor de pools de tensores con rotación estratificada."""
|
|
|
def __init__(self):
|
|
|
self.pools: Dict[str, List['FractalTensor']] = {
|
|
|
'deep27': [], 'mid9': [], 'shallow3': [], 'mixed': []
|
|
|
}
|
|
|
self.rotors: Dict[str, TensorRotor] = {
|
|
|
'deep27': TensorRotor(0, mode="fibonacci"),
|
|
|
'mid9': TensorRotor(0, mode="hybrid"),
|
|
|
'shallow3': TensorRotor(0, mode="phi"),
|
|
|
'mixed': TensorRotor(0, mode="hybrid")
|
|
|
}
|
|
|
|
|
|
def add_tensor(self, tensor: 'FractalTensor'):
|
|
|
"""Añade un tensor al pool apropiado según su profundidad."""
|
|
|
|
|
|
if any(any(bit is not None for bit in vec) for vec in tensor.nivel_27):
|
|
|
pool_name = 'deep27'
|
|
|
elif any(any(bit is not None for bit in vec) for vec in tensor.nivel_9):
|
|
|
pool_name = 'mid9'
|
|
|
else:
|
|
|
pool_name = 'shallow3'
|
|
|
|
|
|
self.pools[pool_name].append(tensor)
|
|
|
self.pools['mixed'].append(tensor)
|
|
|
self.rotors[pool_name].N = len(self.pools[pool_name])
|
|
|
self.rotors['mixed'].N = len(self.pools['mixed'])
|
|
|
|
|
|
def get_tensor_trio(self, task_type: str = "arquetipo") -> List['FractalTensor']:
|
|
|
"""Obtiene un trío de tensores optimizado para una tarea específica."""
|
|
|
task_to_pool = {
|
|
|
'arquetipo': 'mixed', 'dinamica': 'shallow3',
|
|
|
'relator': 'mid9', 'axioma': 'deep27'
|
|
|
}
|
|
|
pool_name = task_to_pool.get(task_type, 'mixed')
|
|
|
|
|
|
|
|
|
if len(self.pools[pool_name]) < 3:
|
|
|
fallback_order = ['mixed', 'shallow3', 'mid9', 'deep27']
|
|
|
for fb_pool_name in fallback_order:
|
|
|
if len(self.pools[fb_pool_name]) >= 3:
|
|
|
pool_name = fb_pool_name
|
|
|
break
|
|
|
|
|
|
pool = self.pools[pool_name]
|
|
|
rotor = self.rotors[pool_name]
|
|
|
|
|
|
if len(pool) < 3:
|
|
|
trio = list(pool)
|
|
|
while len(trio) < 3: trio.append(FractalTensor.neutral())
|
|
|
return trio
|
|
|
|
|
|
indices = [rotor.next() for _ in range(3)]
|
|
|
return [pool[i] for i in indices]
|
|
|
|
|
|
|
|
|
KnowledgeBase = FractalKnowledgeBase
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
print("🌌 DEMOSTRACIÓN FRACTAL AURORA: Arquetipos, Dinámicas y Relatores 🌌")
|
|
|
print("=" * 80)
|
|
|
print("Análisis de conocimiento desde tres perspectivas con datos coherentes.")
|
|
|
print("=" * 80)
|
|
|
|
|
|
|
|
|
kb = FractalKnowledgeBase()
|
|
|
evolver = Evolver()
|
|
|
extender = Extender(kb)
|
|
|
pool_manager = TensorPoolManager()
|
|
|
|
|
|
|
|
|
print("\n🏛️ FASE 1: ANÁLISIS DE ARQUETIPOS")
|
|
|
print("-" * 50)
|
|
|
familia_movimiento = [
|
|
|
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[1,0,0]]*9, nivel_27=[[0,0,1]]*27),
|
|
|
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[1,1,0]]*9, nivel_27=[[0,1,0]]*27),
|
|
|
FractalTensor(nivel_3=[[1,0,1]], nivel_9=[[0,1,1]]*9, nivel_27=[[1,1,1]]*27)
|
|
|
]
|
|
|
for t in familia_movimiento: pool_manager.add_tensor(t)
|
|
|
|
|
|
trio_para_arquetipo = pool_manager.get_tensor_trio('arquetipo')
|
|
|
arquetipo_movimiento = evolver.compute_fractal_archetype(trio_para_arquetipo)
|
|
|
print(f"• Analizando {len(trio_para_arquetipo)} conceptos de 'movimiento'...")
|
|
|
print(f"• ARQUETIPO resultante: {arquetipo_movimiento}")
|
|
|
|
|
|
Ss_movimiento = arquetipo_movimiento.nivel_3[0] if hasattr(arquetipo_movimiento, 'nivel_3') else [0,0,0]
|
|
|
kb.add_archetype('fisica_conceptual', 'movimiento_universal', arquetipo_movimiento, Ss=Ss_movimiento)
|
|
|
print(" └─ Arquetipo almacenado en el espacio 'fisica_conceptual'.")
|
|
|
|
|
|
extender.learn_lut_from_data('fisica_conceptual', [([1, 0, 1], arquetipo_movimiento)])
|
|
|
|
|
|
print("DEBUG: ss_index:", kb._get_space('fisica_conceptual').ss_index)
|
|
|
print("DEBUG: ms_index:", kb._get_space('fisica_conceptual').ms_index)
|
|
|
|
|
|
|
|
|
print("\n⚡ FASE 2: ANÁLISIS DE DINÁMICAS")
|
|
|
print("-" * 50)
|
|
|
|
|
|
estado_t0 = FractalTensor.random()
|
|
|
estado_t1 = evolver.base_transcender.compute_full_fractal(estado_t0, estado_t0, FractalTensor.neutral())
|
|
|
estado_t2 = evolver.base_transcender.compute_full_fractal(estado_t1, estado_t1, FractalTensor.neutral())
|
|
|
secuencia_temporal_logica = [estado_t0, estado_t1, estado_t2]
|
|
|
|
|
|
print(f"• Analizando secuencia temporal de {len(secuencia_temporal_logica)} estados.")
|
|
|
firma_dinamica = evolver.analyze_fractal_dynamics(secuencia_temporal_logica)
|
|
|
print(f"• DINÁMICA resultante: {firma_dinamica}")
|
|
|
Ss_dinamica = firma_dinamica.nivel_3[0] if hasattr(firma_dinamica, 'nivel_3') else [0,0,0]
|
|
|
kb.add_archetype('dinamicas_sistemas', 'evolucion_sistema_X', firma_dinamica, Ss=Ss_dinamica)
|
|
|
print(" └─ Dinámica almacenada en 'dinamicas_sistemas'.")
|
|
|
|
|
|
|
|
|
print("\n🔗 FASE 3: ANÁLISIS DE RELATORES")
|
|
|
print("-" * 50)
|
|
|
|
|
|
concepto_base = FractalTensor.random()
|
|
|
concepto_fuerza = evolver.base_transcender.compute_full_fractal(concepto_base, FractalTensor.random(), FractalTensor.neutral())
|
|
|
concepto_energia = evolver.base_transcender.compute_full_fractal(concepto_base, concepto_fuerza, FractalTensor.neutral())
|
|
|
cluster_contextual = [concepto_base, concepto_fuerza, concepto_energia]
|
|
|
|
|
|
print(f"• Analizando clúster de {len(cluster_contextual)} conceptos relacionados.")
|
|
|
firma_relacional = evolver.analyze_fractal_relations(cluster_contextual)
|
|
|
print(f"• RELATOR resultante: {firma_relacional}")
|
|
|
Ss_relator = firma_relacional.nivel_3[0] if hasattr(firma_relacional, 'nivel_3') else [0,0,0]
|
|
|
kb.add_archetype('mapas_conceptuales', 'mecanica_basica', firma_relacional, Ss=Ss_relator)
|
|
|
print(" └─ Relator almacenado en 'mapas_conceptuales'.")
|
|
|
|
|
|
|
|
|
|
|
|
print("\n🧩 FASE 4: EXTENSIÓN POR ARQUETIPO")
|
|
|
print("-" * 50)
|
|
|
|
|
|
|
|
|
query_vector = arquetipo_movimiento.nivel_3[0][:3]
|
|
|
print(f"• Vector a extender (solo con raíz): {query_vector}")
|
|
|
|
|
|
|
|
|
resultado_extension = extender.extend_fractal(
|
|
|
query_vector,
|
|
|
contexto={'space_id': 'fisica_conceptual'}
|
|
|
)
|
|
|
|
|
|
tensor_reconstruido = resultado_extension['reconstructed_tensor']
|
|
|
print(f"• Método de reconstrucción: {resultado_extension['reconstruction_method']}")
|
|
|
print(f"• Tensor reconstruido: {tensor_reconstruido}")
|
|
|
print(" └─ Los niveles 3, 9 y 27 se han rellenado desde la KB.")
|
|
|
|
|
|
print("\n" + "=" * 80)
|
|
|
print("🎯 DEMOSTRACIÓN FINALIZADA.")
|
|
|
print("=" * 80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from statistics import mode
|
|
|
def impute_none(vec, context, tensor=None):
|
|
|
"""Imputa valores None usando contexto y niveles superiores del tensor."""
|
|
|
result = []
|
|
|
for i, v in enumerate(vec):
|
|
|
if v is not None:
|
|
|
result.append(v)
|
|
|
continue
|
|
|
col = [c[i] for c in context if i < len(c) and c[i] is not None]
|
|
|
if tensor:
|
|
|
if hasattr(tensor, 'nivel_9') and i < len(tensor.nivel_9):
|
|
|
col.extend([x for x in tensor.nivel_9[i] if x is not None])
|
|
|
if hasattr(tensor, 'nivel_3') and i < len(tensor.nivel_3[0]):
|
|
|
col.append(tensor.nivel_3[0][i % 3])
|
|
|
result.append(mode(col) if col else 0)
|
|
|
return result
|
|
|
|
|
|
def validate_ternary_input(vec, expected_len=3, name="input"):
|
|
|
"""Valida y normaliza entradas ternarias."""
|
|
|
if not isinstance(vec, (list, tuple)) or len(vec) != expected_len:
|
|
|
print(f"Warning: Invalid {name}: {vec}, using default {[0]*expected_len}")
|
|
|
return [0] * expected_len
|
|
|
return [None if x is None else int(x) % 2 for x in vec]
|
|
|
|
|
|
|
|
|
def golden_ratio_skip_indices(N, k, trios=3):
|
|
|
"""Devuelve una lista de índices para formar un trío usando saltos áureos."""
|
|
|
phi = (1 + math.sqrt(5)) / 2
|
|
|
skip = max(1, int(N / phi))
|
|
|
indices = []
|
|
|
idx = k
|
|
|
for _ in range(trios):
|
|
|
indices.append(idx % N)
|
|
|
idx = (idx + skip) % N
|
|
|
return indices
|
|
|
|
|
|
def fibonacci(n):
|
|
|
a, b = 1, 1
|
|
|
for _ in range(n):
|
|
|
a, b = b, a + b
|
|
|
return a
|
|
|
|
|
|
def fibonacci_stepping_indices(N, k, trios=3, start_step=0):
|
|
|
"""Devuelve una lista de índices para formar un trío usando pasos de Fibonacci."""
|
|
|
indices = []
|
|
|
idx = k
|
|
|
for i in range(start_step, start_step + trios):
|
|
|
step = fibonacci(i)
|
|
|
indices.append(idx % N)
|
|
|
idx = (idx + step) % N
|
|
|
return indices
|
|
|
|
|
|
|
|
|
class AdjustmentStep:
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
raise NotImplementedError
|
|
|
|
|
|
class MicroShift(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
return [a if v is None else v for v, a in zip(vec, archetype)]
|
|
|
|
|
|
class Regrewire(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
if sum(1 for v, a in zip(vec, archetype) if v == a) >= 2:
|
|
|
return list(archetype)
|
|
|
return vec
|
|
|
|
|
|
class Metatune(AdjustmentStep):
|
|
|
def apply(self, vec, archetype, kb=None):
|
|
|
if kb is not None:
|
|
|
matches = kb.find_archetype_by_ms(archetype)
|
|
|
if matches:
|
|
|
return matches[0]
|
|
|
return vec
|
|
|
|
|
|
|
|
|
def f_not(x):
|
|
|
return 1 - x if x in (0, 1) else 0
|
|
|
def f_not_inv(x):
|
|
|
return 1 - x if x in (0, 1) else 0
|
|
|
f_not.inverse = f_not_inv
|
|
|
|
|
|
def f_inc(x):
|
|
|
return (x + 1) % 2 if x in (0, 1) else 0
|
|
|
def f_inc_inv(x):
|
|
|
return (x - 1) % 2 if x in (0, 1) else 0
|
|
|
f_inc.inverse = f_inc_inv
|
|
|
|
|
|
def f_id(x):
|
|
|
return x
|
|
|
f_id.inverse = f_id
|
|
|
|
|
|
def aurora_apply_sequence(val, sequence):
|
|
|
for func in sequence:
|
|
|
val = func(val)
|
|
|
return val
|
|
|
|
|
|
def aurora_triage_inferencia(A, B, M):
|
|
|
allowed_functions = [f_not, f_inc, f_id]
|
|
|
def normalize_ternary_vector(vec, default=[0,0,0]):
|
|
|
if not isinstance(vec, (list, tuple)):
|
|
|
return default.copy()
|
|
|
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
|
|
|
def validate_function_sequence(M, allowed_functions, max_len=2):
|
|
|
if not isinstance(M, (list, tuple)) or len(M) != 3:
|
|
|
return [[f_id] for _ in range(3)]
|
|
|
return [list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id] for seq in M[:3]] + [[f_id]]*(3-len(M))
|
|
|
A = normalize_ternary_vector(A)
|
|
|
B = normalize_ternary_vector(B)
|
|
|
M = validate_function_sequence(M, allowed_functions)
|
|
|
R = []
|
|
|
for i in range(3):
|
|
|
rA = aurora_apply_sequence(A[i], M[i])
|
|
|
rB = aurora_apply_sequence(B[i], M[i])
|
|
|
if rA is not None and rB is not None:
|
|
|
R.append(rA + rB)
|
|
|
else:
|
|
|
R.append(0)
|
|
|
return R
|
|
|
|
|
|
def aurora_triage_aprendizaje(A, B, R, funciones_permitidas, max_len=2):
|
|
|
import itertools
|
|
|
def normalize_ternary_vector(vec, default=[0,0,0]):
|
|
|
if not isinstance(vec, (list, tuple)):
|
|
|
return default.copy()
|
|
|
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
|
|
|
A = normalize_ternary_vector(A)
|
|
|
B = normalize_ternary_vector(B)
|
|
|
R = normalize_ternary_vector(R)
|
|
|
M = []
|
|
|
for i in range(3):
|
|
|
found = False
|
|
|
for l in range(1, max_len+1):
|
|
|
for seq in itertools.product(funciones_permitidas, repeat=l):
|
|
|
rA = aurora_apply_sequence(A[i], seq)
|
|
|
rB = aurora_apply_sequence(B[i], seq)
|
|
|
if rA is not None and rB is not None and rA + rB == R[i]:
|
|
|
M.append(list(seq))
|
|
|
found = True
|
|
|
break
|
|
|
if found:
|
|
|
break
|
|
|
if not found:
|
|
|
M.append([f_id])
|
|
|
return M
|
|
|
|
|
|
def aurora_triage_deduccion(M, R, known, known_is_A=True):
|
|
|
allowed_functions = [f_not, f_inc, f_id]
|
|
|
def normalize_ternary_vector(vec, default=[0,0,0]):
|
|
|
if not isinstance(vec, (list, tuple)):
|
|
|
return default.copy()
|
|
|
return [None if x is None else int(x) if x in (0,1) else 0 for x in list(vec)[:3]] + [0]*(3-len(vec))
|
|
|
def validate_function_sequence(M, allowed_functions, max_len=2):
|
|
|
if not isinstance(M, (list, tuple)) or len(M) != 3:
|
|
|
return [[f_id] for _ in range(3)]
|
|
|
return [list(seq)[:max_len] if isinstance(seq, (list, tuple)) and all(f in allowed_functions for f in seq) else [f_id] for seq in M[:3]] + [[f_id]]*(3-len(M))
|
|
|
R = normalize_ternary_vector(R)
|
|
|
known = normalize_ternary_vector(known)
|
|
|
M = validate_function_sequence(M, allowed_functions)
|
|
|
deduced = []
|
|
|
for i in range(3):
|
|
|
val = R[i] - aurora_apply_sequence(known[i], M[i]) if R[i] is not None and known[i] is not None else 0
|
|
|
for func in reversed(M[i]):
|
|
|
if hasattr(func, 'inverse'):
|
|
|
val = func.inverse(val)
|
|
|
deduced.append(val if val in (0,1,None) else 0)
|
|
|
return deduced
|
|
|
|
|
|
|
|
|
class InverseEvolver:
|
|
|
"""Reconstruye tensores originales desde sintetizados usando lógica inversa."""
|
|
|
def __init__(self, knowledge_base=None):
|
|
|
self.kb = knowledge_base
|
|
|
self.trigate = Trigate()
|
|
|
self.armonizador = Armonizador(knowledge_base=knowledge_base) if knowledge_base else None
|
|
|
|
|
|
def reconstruct_vectors(self, Ms):
|
|
|
"""Deduce A y B desde Ms usando lógica inversa del Trigate."""
|
|
|
A, B = [], []
|
|
|
for m in Ms:
|
|
|
if m == 0:
|
|
|
A.append(0)
|
|
|
B.append(0)
|
|
|
elif m == 1:
|
|
|
A.append(1)
|
|
|
B.append(0)
|
|
|
else:
|
|
|
A.append(None)
|
|
|
B.append(None)
|
|
|
return A, B
|
|
|
|
|
|
def reconstruct_fractal(self, synthesized):
|
|
|
"""Reconstruye tres tensores fractales desde uno sintetizado (niveles 3, 9, 27)."""
|
|
|
ms_key = synthesized.nivel_3[0]
|
|
|
A_l3, B_l3 = self.reconstruct_vectors(ms_key)
|
|
|
C_l3 = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A_l3, B_l3)]
|
|
|
|
|
|
def reconstruct_level(level_vectors):
|
|
|
A_vectors, B_vectors, C_vectors = [], [], []
|
|
|
for vec in level_vectors:
|
|
|
a, b = self.reconstruct_vectors(vec)
|
|
|
c = [TernaryLogic.ternary_xor(x, y) for x, y in zip(a, b)]
|
|
|
A_vectors.append(a)
|
|
|
B_vectors.append(b)
|
|
|
C_vectors.append(c)
|
|
|
return A_vectors, B_vectors, C_vectors
|
|
|
|
|
|
A_l9, B_l9, C_l9 = reconstruct_level(synthesized.nivel_9)
|
|
|
A_l27, B_l27, C_l27 = reconstruct_level(synthesized.nivel_27)
|
|
|
|
|
|
def create_tensor(n3, n9, n27, ss):
|
|
|
tensor = FractalTensor(nivel_3=n3, nivel_9=n9, nivel_27=n27)
|
|
|
if self.armonizador:
|
|
|
harm = self.armonizador.harmonize(
|
|
|
tensor.nivel_3[0],
|
|
|
archetype=tensor.nivel_3[0],
|
|
|
space_id="inverse"
|
|
|
)
|
|
|
tensor.nivel_3[0] = harm["output"]
|
|
|
tensor.Ss = ss
|
|
|
return tensor
|
|
|
|
|
|
return [
|
|
|
create_tensor([A_l3], A_l9, A_l27, ss="A"),
|
|
|
create_tensor([B_l3], B_l9, B_l27, ss="B"),
|
|
|
create_tensor([C_l3], C_l9, C_l27, ss="C")
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NULL = None
|
|
|
TERNARY_VALUES = [0, 1, NULL]
|
|
|
|
|
|
|
|
|
class Trigate:
|
|
|
"""
|
|
|
Fundamental Aurora logic module implementing ternary operations.
|
|
|
|
|
|
Supports three operational modes:
|
|
|
1. Inference: A + B + M -> R (given inputs and control, compute result)
|
|
|
2. Learning: A + B + R -> M (given inputs and result, learn control)
|
|
|
3. Deduction: M + R + A -> B (given control, result, and one input, deduce other)
|
|
|
|
|
|
All operations are O(1) using precomputed lookup tables (LUTs).
|
|
|
"""
|
|
|
|
|
|
|
|
|
_LUT_INFER: Dict[Tuple, int] = {}
|
|
|
_LUT_LEARN: Dict[Tuple, int] = {}
|
|
|
_LUT_DEDUCE_A: Dict[Tuple, int] = {}
|
|
|
_LUT_DEDUCE_B: Dict[Tuple, int] = {}
|
|
|
_initialized = False
|
|
|
|
|
|
def __init__(self):
|
|
|
"""Initialize Trigate and ensure LUTs are computed."""
|
|
|
if not Trigate._initialized:
|
|
|
Trigate._initialize_luts()
|
|
|
|
|
|
@classmethod
|
|
|
def _initialize_luts(cls):
|
|
|
"""
|
|
|
Initialize all lookup tables for O(1) operations.
|
|
|
|
|
|
Based on extended XOR logic with NULL propagation:
|
|
|
- 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0
|
|
|
- Any operation with NULL propagates NULL
|
|
|
- Control bit M determines XOR (1) or XNOR (0)
|
|
|
"""
|
|
|
print("Initializing Trigate LUTs...")
|
|
|
|
|
|
|
|
|
for a, b, m, r in itertools.product(TERNARY_VALUES, repeat=4):
|
|
|
|
|
|
|
|
|
computed_r = cls._compute_inference(a, b, m)
|
|
|
cls._LUT_INFER[(a, b, m)] = computed_r
|
|
|
|
|
|
|
|
|
|
|
|
learned_m = cls._compute_learning(a, b, r)
|
|
|
cls._LUT_LEARN[(a, b, r)] = learned_m
|
|
|
|
|
|
|
|
|
deduced_b = cls._compute_deduction_b(m, r, a)
|
|
|
deduced_a = cls._compute_deduction_a(m, r, b)
|
|
|
|
|
|
cls._LUT_DEDUCE_B[(m, r, a)] = deduced_b
|
|
|
cls._LUT_DEDUCE_A[(m, r, b)] = deduced_a
|
|
|
|
|
|
cls._initialized = True
|
|
|
print(f"Trigate LUTs initialized: {len(cls._LUT_INFER)} entries each")
|
|
|
|
|
|
@staticmethod
|
|
|
def _compute_inference(a: Union[int, None], b: Union[int, None], m: Union[int, None]) -> Union[int, None]:
|
|
|
"""
|
|
|
Compute R given A, B, M using ternary logic.
|
|
|
|
|
|
Logic:
|
|
|
- If any input is NULL, result is NULL
|
|
|
- If M is 1: R = A XOR B
|
|
|
- If M is 0: R = A XNOR B (NOT(A XOR B))
|
|
|
"""
|
|
|
if a is NULL or b is NULL or m is NULL:
|
|
|
return NULL
|
|
|
|
|
|
if m == 1:
|
|
|
return a ^ b
|
|
|
else:
|
|
|
return 1 - (a ^ b)
|
|
|
|
|
|
@staticmethod
|
|
|
def _compute_learning(a: Union[int, None], b: Union[int, None], r: Union[int, None]) -> Union[int, None]:
|
|
|
"""
|
|
|
Learn control M given A, B, R.
|
|
|
|
|
|
Logic:
|
|
|
- If any input is NULL, cannot learn -> NULL
|
|
|
- If A XOR B == R, then M = 1 (XOR)
|
|
|
- If A XOR B != R, then M = 0 (XNOR)
|
|
|
"""
|
|
|
if a is NULL or b is NULL or r is NULL:
|
|
|
return NULL
|
|
|
|
|
|
xor_result = a ^ b
|
|
|
if xor_result == r:
|
|
|
return 1
|
|
|
else:
|
|
|
return 0
|
|
|
|
|
|
@staticmethod
|
|
|
def _compute_deduction_a(m: Union[int, None], r: Union[int, None], b: Union[int, None]) -> Union[int, None]:
|
|
|
"""
|
|
|
Deduce A given M, R, B.
|
|
|
|
|
|
Logic:
|
|
|
- If any input is NULL, cannot deduce -> NULL
|
|
|
- If M is 1: A = R XOR B (since R = A XOR B)
|
|
|
- If M is 0: A = NOT(R) XOR B (since R = NOT(A XOR B))
|
|
|
"""
|
|
|
if m is NULL or r is NULL or b is NULL:
|
|
|
return NULL
|
|
|
|
|
|
if m == 1:
|
|
|
return r ^ b
|
|
|
else:
|
|
|
return (1 - r) ^ b
|
|
|
|
|
|
@staticmethod
|
|
|
def _compute_deduction_b(m: Union[int, None], r: Union[int, None], a: Union[int, None]) -> Union[int, None]:
|
|
|
"""
|
|
|
Deduce B given M, R, A.
|
|
|
|
|
|
Logic: Same as deduce_a but solving for B instead of A.
|
|
|
"""
|
|
|
if m is NULL or r is NULL or a is NULL:
|
|
|
return NULL
|
|
|
|
|
|
if m == 1:
|
|
|
return r ^ a
|
|
|
else:
|
|
|
return (1 - r) ^ a
|
|
|
|
|
|
def infer(self, A: List[Union[int, None]], B: List[Union[int, None]], M: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""
|
|
|
Inference mode: Compute R given A, B, M.
|
|
|
|
|
|
Args:
|
|
|
A: First input vector (3 bits)
|
|
|
B: Second input vector (3 bits)
|
|
|
M: Control vector (3 bits)
|
|
|
|
|
|
Returns:
|
|
|
R: Result vector (3 bits)
|
|
|
"""
|
|
|
if not (len(A) == len(B) == len(M) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
|
|
|
return [self._LUT_INFER[(a, b, m)] for a, b, m in zip(A, B, M)]
|
|
|
|
|
|
def learn(self, A: List[Union[int, None]], B: List[Union[int, None]], R: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""
|
|
|
Learning mode: Learn control M given A, B, R.
|
|
|
|
|
|
Args:
|
|
|
A: First input vector (3 bits)
|
|
|
B: Second input vector (3 bits)
|
|
|
R: Target result vector (3 bits)
|
|
|
|
|
|
Returns:
|
|
|
M: Learned control vector (3 bits)
|
|
|
"""
|
|
|
if not (len(A) == len(B) == len(R) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
|
|
|
return [self._LUT_LEARN[(a, b, r)] for a, b, r in zip(A, B, R)]
|
|
|
|
|
|
def deduce_a(self, M: List[Union[int, None]], R: List[Union[int, None]], B: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""
|
|
|
Deduction mode: Deduce A given M, R, B.
|
|
|
|
|
|
Args:
|
|
|
M: Control vector (3 bits)
|
|
|
R: Result vector (3 bits)
|
|
|
B: Known input vector (3 bits)
|
|
|
|
|
|
Returns:
|
|
|
A: Deduced input vector (3 bits)
|
|
|
"""
|
|
|
if not (len(M) == len(R) == len(B) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
|
|
|
return [self._LUT_DEDUCE_A[(m, r, b)] for m, r, b in zip(M, R, B)]
|
|
|
|
|
|
def deduce_b(self, M: List[Union[int, None]], R: List[Union[int, None]], A: List[Union[int, None]]) -> List[Union[int, None]]:
|
|
|
"""
|
|
|
Deduction mode: Deduce B given M, R, A.
|
|
|
|
|
|
Args:
|
|
|
M: Control vector (3 bits)
|
|
|
R: Result vector (3 bits)
|
|
|
A: Known input vector (3 bits)
|
|
|
|
|
|
Returns:
|
|
|
B: Deduced input vector (3 bits)
|
|
|
"""
|
|
|
if not (len(M) == len(R) == len(A) == 3):
|
|
|
raise ValueError("All vectors must have exactly 3 elements")
|
|
|
|
|
|
return [self._LUT_DEDUCE_B[(m, r, a)] for m, r, a in zip(M, R, A)]
|
|
|
|
|
|
def validate_triangle_closure(self, A: List[Union[int, None]], B: List[Union[int, None]],
|
|
|
M: List[Union[int, None]], R: List[Union[int, None]]) -> bool:
|
|
|
"""
|
|
|
Validate that A, B, M, R form a valid logical triangle.
|
|
|
|
|
|
This ensures geometric coherence: the triangle "closes" properly.
|
|
|
|
|
|
Args:
|
|
|
A, B, M, R: The four vectors forming the logical triangle
|
|
|
|
|
|
Returns:
|
|
|
True if triangle is valid, False otherwise
|
|
|
"""
|
|
|
|
|
|
expected_R = self.infer(A, B, M)
|
|
|
|
|
|
|
|
|
for expected, actual in zip(expected_R, R):
|
|
|
if expected != actual:
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def get_truth_table(self, operation: str = "infer") -> str:
|
|
|
"""
|
|
|
Generate human-readable truth table for debugging.
|
|
|
|
|
|
Args:
|
|
|
operation: "infer", "learn", "deduce_a", or "deduce_b"
|
|
|
|
|
|
Returns:
|
|
|
Formatted truth table string
|
|
|
"""
|
|
|
if operation == "infer":
|
|
|
lut = self._LUT_INFER
|
|
|
header = "A | B | M | R"
|
|
|
elif operation == "learn":
|
|
|
lut = self._LUT_LEARN
|
|
|
header = "A | B | R | M"
|
|
|
elif operation == "deduce_a":
|
|
|
lut = self._LUT_DEDUCE_A
|
|
|
header = "M | R | B | A"
|
|
|
elif operation == "deduce_b":
|
|
|
lut = self._LUT_DEDUCE_B
|
|
|
header = "M | R | A | B"
|
|
|
else:
|
|
|
raise ValueError(f"Unknown operation: {operation}")
|
|
|
|
|
|
def format_val(v):
|
|
|
return "N" if v is NULL else str(v)
|
|
|
|
|
|
lines = [header, "-" * len(header)]
|
|
|
|
|
|
for key, value in sorted(lut.items()):
|
|
|
key_str = " | ".join(format_val(k) for k in key)
|
|
|
val_str = format_val(value)
|
|
|
lines.append(f"{key_str} | {val_str}")
|
|
|
|
|
|
return "\n".join(lines)
|
|
|
|
|
|
def synthesize(self, A: List[int], B: List[int]) -> Tuple[List[Optional[int]], List[Optional[int]]]:
|
|
|
"""Síntesis Aurora: genera M (lógica) y S (forma) desde A y B."""
|
|
|
M = [TernaryLogic.ternary_xor(a, b) for a, b in zip(A, B)]
|
|
|
S = [TernaryLogic.ternary_xnor(a, b) for a, b in zip(A, B)]
|
|
|
return M, S
|
|
|
|
|
|
def recursive_synthesis(
|
|
|
self,
|
|
|
vectors: List[List[int]]
|
|
|
) -> Tuple[List[Optional[int]], List[List[Optional[int]]]]:
|
|
|
"""
|
|
|
Reduce secuencialmente una lista ≥2 de vectores ternarios.
|
|
|
|
|
|
Devuelve:
|
|
|
• resultado_final – vector M después de la última combinación
|
|
|
• history – lista de cada resultado intermedio (M-k) para depuración
|
|
|
"""
|
|
|
if len(vectors) < 2:
|
|
|
raise ValueError("Se necesitan al menos 2 vectores")
|
|
|
|
|
|
history: List[List[Optional[int]]] = []
|
|
|
current = vectors[0]
|
|
|
|
|
|
for nxt in vectors[1:]:
|
|
|
current, _ = self.synthesize(current, nxt)
|
|
|
history.append(current)
|
|
|
|
|
|
return current, history
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
return f"Trigate(initialized={self._initialized}, lut_size={len(self._LUT_INFER)})" |