File size: 2,835 Bytes
9a1b9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    LEVERAGE PAPER RESULTS SUMMARY
    ================================
    Experiment Timestamp: 20251124_152044
    WMH Segmentation: Binary vs Three-class Classification Comparison

    DATASET INFORMATION:
    --------------------
    Training Images: 2050 
    Test Images: 350
    Image Size: (256, 256)
    Classes: Background (0), Normal WMH (1), Abnormal WMH (2)

    METHODOLOGY:
    ------------
    Architecture: Enhanced U-Net with Batch Normalization and Dropout
    Loss Functions: 
    - Scenario 1: weighted_bce
    - Scenario 2: weighted_categorical
    Training Epochs: 50
    Batch Size: 8
    Learning Rate: 0.0001

    PERFORMANCE RESULTS:
    --------------------
                        | Scenario 1 (Binary) | Scenario 2 (3-class) | Improvement
    --------------------|---------------------|----------------------|------------
    Accuracy            | 0.9852            | 0.9965             | +0.0112
    Precision           | 0.3340           | 0.7589            | +0.4248
    Recall              | 0.9682              | 0.7765               | -0.1917
    Dice Coefficient    | 0.4967                | 0.7676                 | +0.2709
    IoU Coefficient     | 0.3304                 | 0.6228                  | +0.2924

    STATISTICAL SIGNIFICANCE:
    -------------------------
    DICE COEFFICIENT:
    Test: Paired t-test
    t-statistic: 9.6244
    p-value: 0.0000
    Effect Size (Cohen's d): 0.5643
    95% Confidence Interval: [0.1353, 0.2051]
    Result: SIGNIFICANT improvement

    IoU COEFFICIENT:
    Test: Paired t-test
    t-statistic: 10.1596
    p-value: 0.0000
    Effect Size (Cohen's d): 0.6481
    95% Confidence Interval: [0.1356, 0.2010]
    Result: SIGNIFICANT improvement

    KEY FINDINGS:
    -------------
    1. Three-class segmentation shows 56.54% improvement in Dice coefficient
    2. Three-class segmentation shows 81.33% improvement in IoU coefficient
    3. Dice analysis confirms significant improvement
    4. IoU analysis confirms significant improvement
    5. Post-processing provided substantial improvements in both scenarios

    FILES GENERATED:
    ----------------
    - Models: scenario1_binary_model.h5, scenario2_multiclass_model.h5
    - Figures: training_curves.png/.pdf, comparison_visualization.png/.pdf, metrics_comparison.png/.pdf
    - Tables: comprehensive_results.csv/.xlsx, latex_table.tex
    - Statistics: statistical_analysis.json, statistical_report.txt
    - Predictions: All test predictions and ground truth data saved

    PUBLICATION READINESS:
    ----------------------
    βœ“ High-resolution figures (300 DPI, PNG/PDF)
    βœ“ LaTeX-formatted tables
    βœ“ Comprehensive statistical analysis (Dice + IoU)
    βœ“ Post-processing impact analysis
    βœ“ Reproducible results with saved models
    βœ“ Professional documentation