|
|
--- |
|
|
library_name: transformers |
|
|
license: mit |
|
|
base_model: Davlan/afro-xlmr-base |
|
|
tags: |
|
|
- named-entity-recognition |
|
|
- hausa |
|
|
- african-language |
|
|
- pii-detection |
|
|
- token-classification |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- Beijuka/Multilingual_PII_NER_dataset |
|
|
metrics: |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: multilingual-Davlan/afro-xlmr-base-hausa-ner-v1 |
|
|
results: |
|
|
- task: |
|
|
name: Token Classification |
|
|
type: token-classification |
|
|
dataset: |
|
|
name: Beijuka/Multilingual_PII_NER_dataset |
|
|
type: Beijuka/Multilingual_PII_NER_dataset |
|
|
args: 'split: train+validation+test' |
|
|
metrics: |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.9298021697511167 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.9256670902160101 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.9277300222858963 |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.9811780190852254 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# multilingual-Davlan/afro-xlmr-base-hausa-ner-v1 |
|
|
|
|
|
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.1152 |
|
|
- Precision: 0.9298 |
|
|
- Recall: 0.9257 |
|
|
- F1: 0.9277 |
|
|
- Accuracy: 0.9812 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-05 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 20 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
|
| No log | 1.0 | 301 | 0.1139 | 0.8862 | 0.8862 | 0.8862 | 0.9694 | |
|
|
| 0.2008 | 2.0 | 602 | 0.0925 | 0.8741 | 0.9155 | 0.8944 | 0.9729 | |
|
|
| 0.2008 | 3.0 | 903 | 0.0910 | 0.8901 | 0.9125 | 0.9012 | 0.9747 | |
|
|
| 0.0686 | 4.0 | 1204 | 0.1056 | 0.8947 | 0.9263 | 0.9102 | 0.9753 | |
|
|
| 0.0501 | 5.0 | 1505 | 0.0921 | 0.9071 | 0.9305 | 0.9187 | 0.9775 | |
|
|
| 0.0501 | 6.0 | 1806 | 0.0939 | 0.9062 | 0.9377 | 0.9217 | 0.9789 | |
|
|
| 0.036 | 7.0 | 2107 | 0.1034 | 0.8926 | 0.9359 | 0.9137 | 0.9769 | |
|
|
| 0.036 | 8.0 | 2408 | 0.1305 | 0.9019 | 0.9425 | 0.9218 | 0.9779 | |
|
|
| 0.0219 | 9.0 | 2709 | 0.1320 | 0.9037 | 0.9335 | 0.9184 | 0.9778 | |
|
|
| 0.0089 | 10.0 | 3010 | 0.1241 | 0.9271 | 0.9065 | 0.9167 | 0.9781 | |
|
|
| 0.0089 | 11.0 | 3311 | 0.1386 | 0.9184 | 0.9311 | 0.9247 | 0.9791 | |
|
|
| 0.0056 | 12.0 | 3612 | 0.1482 | 0.9094 | 0.9377 | 0.9233 | 0.9788 | |
|
|
| 0.0056 | 13.0 | 3913 | 0.1550 | 0.9109 | 0.9311 | 0.9209 | 0.9783 | |
|
|
| 0.0032 | 14.0 | 4214 | 0.1631 | 0.9078 | 0.9377 | 0.9225 | 0.9792 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.55.4 |
|
|
- Pytorch 2.8.0+cu126 |
|
|
- Datasets 4.0.0 |
|
|
- Tokenizers 0.21.4 |
|
|
|