AlienChen commited on
Commit
a620d8f
·
verified ·
1 Parent(s): 76c181c

Update moo.py

Browse files
Files changed (1) hide show
  1. moo.py +21 -11
moo.py CHANGED
@@ -33,17 +33,27 @@ target_sequence = tokenizer(target, return_tensors='pt')['input_ids'].to(device)
33
  # Load Models
34
  solver = load_solver('./ckpt/peptide/cnn_epoch200_lr0.0001_embed512_hidden256_loss3.1051.ckpt', vocab_size, device)
35
 
36
- bindevaluator = load_bindevaluator('./classifier_ckpt/finetuned_BindEvaluator.ckpt', device)
37
- motif_model = MotifModel(bindevaluator, target_sequence, motifs, penalty=args.motif_penalty)
38
-
39
- affinity_predictor = load_affinity_predictor('./classifier_ckpt/binding_affinity_unpooled.pt', device)
40
- affinity_model = AffinityModel(affinity_predictor, target_sequence)
41
- hemolysis_model = HemolysisModel(device=device)
42
- nonfouling_model = NonfoulingModel(device=device)
43
- solubility_model = SolubilityModelNew(device=device)
44
- halflife_model = HalfLifeModel(device=device)
45
-
46
- score_models = [hemolysis_model, nonfouling_model, halflife_model, affinity_model, motif_model]
 
 
 
 
 
 
 
 
 
 
47
 
48
  for i in range(args.n_batches):
49
  if source_distribution == "uniform":
 
33
  # Load Models
34
  solver = load_solver('./ckpt/peptide/cnn_epoch200_lr0.0001_embed512_hidden256_loss3.1051.ckpt', vocab_size, device)
35
 
36
+ score_models = []
37
+ if 'Hemolysis' in args.objectives:
38
+ hemolysis_model = HemolysisModel(device=device)
39
+ score_models.append(hemolysis_model)
40
+ if 'Non-Fouling' in args.objectives:
41
+ nonfouling_model = NonfoulingModel(device=device)
42
+ score_models.append(nonfouling_model)
43
+ if 'Solubility' in args.objectives:
44
+ solubility_model = SolubilityModelNew(device=device)
45
+ score_models.append(solubility_model)
46
+ if 'Half-Life' in args.objectives:
47
+ halflife_model = HalfLifeModel(device=device)
48
+ score_models.append(halflife_model)
49
+ if 'Affinity' in args.objectives:
50
+ affinity_predictor = load_affinity_predictor('/scratch/pranamlab/tong/checkpoints/MOG-DFM/classifier_ckpt/binding_affinity_unpooled.pt', device)
51
+ affinity_model = AffinityModel(affinity_predictor, target_sequence)
52
+ score_models.append(affinity_model)
53
+ if 'Motif' in args.objectives or 'Specificity' in args.objectives:
54
+ bindevaluator = load_bindevaluator('/scratch/pranamlab/tong/checkpoints/BindEvaluator/model_path/finetuned_BindEvaluator.ckpt', device)
55
+ motif_model = MotifModel(bindevaluator, target_sequence, motifs, penalty=args.motif_penalty)
56
+ score_models.append(motif_model)
57
 
58
  for i in range(args.n_batches):
59
  if source_distribution == "uniform":