nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_topic_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
sentences = [
'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1975 |
| cosine_accuracy@3 |
0.5547 |
| cosine_accuracy@5 |
0.8161 |
| cosine_accuracy@10 |
0.9893 |
| cosine_precision@1 |
0.1975 |
| cosine_precision@3 |
0.1849 |
| cosine_precision@5 |
0.1632 |
| cosine_precision@10 |
0.0989 |
| cosine_recall@1 |
0.1975 |
| cosine_recall@3 |
0.5547 |
| cosine_recall@5 |
0.8161 |
| cosine_recall@10 |
0.9893 |
| cosine_ndcg@10 |
0.5664 |
| cosine_mrr@10 |
0.4327 |
| cosine_map@100 |
0.4333 |
Training Details
Training Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 35,964 training samples
- Columns:
query, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
query |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 17 tokens
- mean: 40.37 tokens
- max: 93 tokens
|
- min: 5 tokens
- mean: 18.75 tokens
- max: 56 tokens
|
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
|
- Samples:
| query |
positive |
negative |
This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades. |
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 |
Explaining the significance of the current study |
This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach. |
On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks |
Stating the focus, aim, or argument of a short paper |
Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings. |
Audit committee, board of director characteristics, and earnings management |
General reference to previous research or scholarship: highlighting negative outcomes |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 4,495 evaluation samples
- Columns:
query, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
query |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 18 tokens
- mean: 40.1 tokens
- max: 87 tokens
|
- min: 5 tokens
- mean: 18.75 tokens
- max: 58 tokens
|
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
|
- Samples:
| query |
positive |
negative |
In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments. |
Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial |
Some ways of introducing quotations |
In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices. |
Research Methodology: A Step-by-Step Guide for Beginners |
Surveys and interviews: Reporting proportions |
Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity. |
Chemical reactivity indexes in density functional theory |
General comments on the relevant literature |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
learning_rate: 2e-05
num_train_epochs: 10
warmup_ratio: 0.1
fp16: True
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
SciGen-Eval-Set_cosine_ndcg@10 |
| 0 |
0 |
- |
- |
0.5454 |
| 0.1418 |
20 |
4.4872 |
3.1379 |
0.5468 |
| 0.2837 |
40 |
2.241 |
1.7162 |
0.5497 |
| 0.4255 |
60 |
1.5937 |
1.4834 |
0.5524 |
| 0.5674 |
80 |
1.5356 |
1.3911 |
0.5541 |
| 0.7092 |
100 |
1.4106 |
1.3277 |
0.5549 |
| 0.8511 |
120 |
1.2612 |
1.2919 |
0.5561 |
| 0.9929 |
140 |
1.3147 |
1.2642 |
0.5572 |
| 1.1348 |
160 |
1.1527 |
1.2529 |
0.5582 |
| 1.2766 |
180 |
1.2103 |
1.2388 |
0.5593 |
| 1.4184 |
200 |
1.2407 |
1.2235 |
0.5598 |
| 1.5603 |
220 |
1.1356 |
1.2101 |
0.5607 |
| 1.7021 |
240 |
1.1644 |
1.1938 |
0.5605 |
| 1.8440 |
260 |
1.1927 |
1.1864 |
0.5612 |
| 1.9858 |
280 |
1.1909 |
1.1800 |
0.5613 |
| 2.1277 |
300 |
1.0549 |
1.1785 |
0.5620 |
| 2.2695 |
320 |
1.0745 |
1.1755 |
0.5630 |
| 2.4113 |
340 |
1.1485 |
1.1656 |
0.5637 |
| 2.5532 |
360 |
1.1159 |
1.1654 |
0.5637 |
| 2.6950 |
380 |
1.0686 |
1.1623 |
0.5640 |
| 2.8369 |
400 |
1.1436 |
1.1594 |
0.5632 |
| 2.9787 |
420 |
1.0899 |
1.1534 |
0.5644 |
| 3.1206 |
440 |
1.0756 |
1.1512 |
0.5647 |
| 3.2624 |
460 |
1.0203 |
1.1536 |
0.5645 |
| 3.4043 |
480 |
1.1073 |
1.1564 |
0.5650 |
| 3.5461 |
500 |
1.0423 |
1.1594 |
0.5651 |
| 3.6879 |
520 |
1.069 |
1.1514 |
0.5652 |
| 3.8298 |
540 |
1.0101 |
1.1538 |
0.5645 |
| 3.9716 |
560 |
1.0685 |
1.1647 |
0.5650 |
| 4.1135 |
580 |
1.0326 |
1.1618 |
0.5653 |
| 4.2553 |
600 |
1.0729 |
1.1587 |
0.5648 |
| 4.3972 |
620 |
1.0417 |
1.1515 |
0.5655 |
| 4.5390 |
640 |
1.0438 |
1.1528 |
0.5657 |
| 4.6809 |
660 |
1.025 |
1.1433 |
0.5660 |
| 4.8227 |
680 |
1.0526 |
1.1382 |
0.5662 |
| 4.9645 |
700 |
1.0485 |
1.1392 |
0.5663 |
| 5.1064 |
720 |
1.0348 |
1.1411 |
0.5665 |
| 5.2482 |
740 |
1.1001 |
1.1511 |
0.5663 |
| 5.3901 |
760 |
1.0926 |
1.1625 |
0.5662 |
| 5.5319 |
780 |
1.0885 |
1.1487 |
0.5662 |
| 5.6738 |
800 |
1.0942 |
1.1492 |
0.5665 |
| 5.8156 |
820 |
1.0457 |
1.1465 |
0.5666 |
| 5.9574 |
840 |
1.0479 |
1.1461 |
0.5664 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}