|
|
--- |
|
|
frameworks: |
|
|
- Pytorch |
|
|
license: Apache License 2.0 |
|
|
tags: [] |
|
|
tasks: |
|
|
- image-to-image |
|
|
base_model: |
|
|
- Qwen/Qwen-Image-Edit |
|
|
base_model_relation: adapter |
|
|
--- |
|
|
|
|
|
# Qwen-Image-Edit 人脸生成图像模型 |
|
|
## 模型介绍 |
|
|
|
|
|
本模型是基于 [Qwen-Image-Edit](https://www.modelscope.cn/models/Qwen/Qwen-Image-Edit) 人脸控制图像生成模型。输入裁剪下的人脸图像,输出该人的人像图片。 |
|
|
|
|
|
## 效果展示 |
|
|
|
|
|
|人脸|生成图1|生成图2|生成图3|生成图4| |
|
|
|-|-|-|-|-| |
|
|
|||||| |
|
|
|
|
|
|
|
|
|
|
|
## 推理代码 |
|
|
``` |
|
|
git clone https://github.com/modelscope/DiffSynth-Studio.git |
|
|
cd DiffSynth-Studio |
|
|
pip install -e . |
|
|
``` |
|
|
|
|
|
```python |
|
|
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig |
|
|
import torch |
|
|
from modelscope import snapshot_download, dataset_snapshot_download |
|
|
from PIL import Image |
|
|
|
|
|
pipe = QwenImagePipeline.from_pretrained( |
|
|
torch_dtype=torch.bfloat16, |
|
|
device="cuda", |
|
|
model_configs=[ |
|
|
ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), |
|
|
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), |
|
|
], |
|
|
tokenizer_config=None, |
|
|
processor_config=ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="processor/"), |
|
|
) |
|
|
snapshot_download("DiffSynth-Studio/Qwen-Image-Edit-F2P", local_dir="models/DiffSynth-Studio/Qwen-Image-Edit-F2P", allow_file_pattern="model.safetensors") |
|
|
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-Edit-F2P/model.safetensors") |
|
|
dataset_snapshot_download( |
|
|
dataset_id="DiffSynth-Studio/example_image_dataset", |
|
|
local_dir="./data/example_image_dataset", |
|
|
allow_file_pattern="f2p/qwen_woman_face_crop.png" |
|
|
) |
|
|
face_image = Image.open("data/example_image_dataset/f2p/qwen_woman_face_crop.png").convert("RGB") |
|
|
|
|
|
prompt = "摄影。一个年轻女性穿着黄色连衣裙,站在花田中,背景是五颜六色的花朵和绿色的草地。" |
|
|
image = pipe(prompt, edit_image=face_image, seed=42, num_inference_steps=40, height=1152, width=864) |
|
|
image.save(f"image.jpg") |
|
|
``` |
|
|
人脸自动裁剪 |
|
|
```python |
|
|
import torch |
|
|
from PIL import Image |
|
|
import numpy as np |
|
|
from insightface.app import FaceAnalysis |
|
|
import cv2 |
|
|
|
|
|
class FaceDetector(torch.nn.Module): |
|
|
|
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] |
|
|
provider_options = [{"device_id": 0}, {}] |
|
|
self.app_640 = FaceAnalysis(name='antelopev2', providers=providers, provider_options=provider_options) |
|
|
self.app_640.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
self.app_320 = FaceAnalysis(name='antelopev2', providers=providers, provider_options=provider_options) |
|
|
self.app_320.prepare(ctx_id=0, det_size=(320, 320)) |
|
|
self.app_160 = FaceAnalysis(name='antelopev2', providers=providers, provider_options=provider_options) |
|
|
self.app_160.prepare(ctx_id=0, det_size=(160, 160)) |
|
|
|
|
|
def _detect_face(self, id_image_cv2): |
|
|
face_info = self.app_640.get(id_image_cv2) |
|
|
if len(face_info) > 0: |
|
|
return face_info |
|
|
face_info = self.app_320.get(id_image_cv2) |
|
|
if len(face_info) > 0: |
|
|
return face_info |
|
|
face_info = self.app_160.get(id_image_cv2) |
|
|
return face_info |
|
|
|
|
|
def crop_face(self, id_image): |
|
|
face_info = self._detect_face(cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR)) |
|
|
if len(face_info) == 0: |
|
|
return None |
|
|
else: |
|
|
bbox = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]['bbox'] |
|
|
return id_image.crop(list(map(int, bbox))) |
|
|
|
|
|
|
|
|
face_detector = FaceDetector() |
|
|
face_image = face_detector.crop_face(Image.open("image_2.jpg")) |
|
|
face_image.save("face_crop.jpg") |
|
|
|
|
|
``` |