|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: Qwen/Qwen2-1.5B |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: fine_tuned_hswag_callback10 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# fine_tuned_hswag_callback10 |
|
|
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.1861 |
|
|
- Accuracy: 0.9602 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 3 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
|
| 0.7551 | 0.0322 | 100 | 0.4489 | 0.9012 | |
|
|
| 0.3977 | 0.0644 | 200 | 0.5959 | 0.8943 | |
|
|
| 0.3608 | 0.0966 | 300 | 0.2267 | 0.9258 | |
|
|
| 0.3092 | 0.1287 | 400 | 0.1801 | 0.9374 | |
|
|
| 0.1932 | 0.1609 | 500 | 0.1921 | 0.9562 | |
|
|
| 0.1405 | 0.1931 | 600 | 0.2487 | 0.9573 | |
|
|
| 0.3093 | 0.2253 | 700 | 0.1245 | 0.9573 | |
|
|
| 0.1804 | 0.2575 | 800 | 0.1496 | 0.9602 | |
|
|
| 0.1717 | 0.2897 | 900 | 0.1923 | 0.9573 | |
|
|
| 0.1986 | 0.3219 | 1000 | 0.4235 | 0.9167 | |
|
|
| 0.1786 | 0.3540 | 1100 | 0.1436 | 0.9591 | |
|
|
| 0.1563 | 0.3862 | 1200 | 0.2635 | 0.9468 | |
|
|
| 0.188 | 0.4184 | 1300 | 0.1891 | 0.9540 | |
|
|
| 0.137 | 0.4506 | 1400 | 0.2017 | 0.9348 | |
|
|
| 0.1438 | 0.4828 | 1500 | 0.1510 | 0.9660 | |
|
|
| 0.1241 | 0.5150 | 1600 | 0.2152 | 0.9551 | |
|
|
| 0.1793 | 0.5472 | 1700 | 0.1861 | 0.9602 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.49.0 |
|
|
- Pytorch 2.6.0+cu126 |
|
|
- Datasets 3.3.2 |
|
|
- Tokenizers 0.21.0 |
|
|
|