|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: Qwen/Qwen2-1.5B |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: fine_tuned_per_domain_balanced |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# fine_tuned_per_domain_balanced |
|
|
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.1209 |
|
|
- Accuracy: 0.9540 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 32 |
|
|
- eval_batch_size: 32 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 3 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
|
| 0.5664 | 0.0203 | 100 | 0.2706 | 0.8890 | |
|
|
| 0.2871 | 0.0406 | 200 | 0.2891 | 0.8871 | |
|
|
| 0.2495 | 0.0608 | 300 | 0.2310 | 0.9026 | |
|
|
| 0.2414 | 0.0811 | 400 | 0.1710 | 0.9290 | |
|
|
| 0.1983 | 0.1014 | 500 | 0.1614 | 0.9332 | |
|
|
| 0.198 | 0.1217 | 600 | 0.1482 | 0.9394 | |
|
|
| 0.2112 | 0.1419 | 700 | 0.1545 | 0.9443 | |
|
|
| 0.1791 | 0.1622 | 800 | 0.1303 | 0.9501 | |
|
|
| 0.1707 | 0.1825 | 900 | 0.1822 | 0.9340 | |
|
|
| 0.1663 | 0.2028 | 1000 | 0.1297 | 0.9511 | |
|
|
| 0.1657 | 0.2230 | 1100 | 0.1433 | 0.9492 | |
|
|
| 0.1467 | 0.2433 | 1200 | 0.1107 | 0.9590 | |
|
|
| 0.1519 | 0.2636 | 1300 | 0.1250 | 0.9548 | |
|
|
| 0.1474 | 0.2839 | 1400 | 0.1045 | 0.9613 | |
|
|
| 0.1509 | 0.3041 | 1500 | 0.1180 | 0.9593 | |
|
|
| 0.147 | 0.3244 | 1600 | 0.1076 | 0.9588 | |
|
|
| 0.1308 | 0.3447 | 1700 | 0.1209 | 0.9540 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.49.0 |
|
|
- Pytorch 2.6.0+cu126 |
|
|
- Datasets 3.3.2 |
|
|
- Tokenizers 0.21.0 |
|
|
|