File size: 24,899 Bytes
a17939e d6816d4 bea7101 752c496 d6816d4 9c59aeb d6816d4 bea7101 d6816d4 bea7101 d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 9c59aeb d6816d4 a17939e bea7101 a17939e bea7101 a17939e 9c59aeb bea7101 9c59aeb bea7101 a17939e bea7101 a17939e bea7101 a17939e bea7101 9c59aeb bea7101 a17939e bea7101 a17939e bea7101 a17939e bea7101 a17939e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Optional, Tuple, Union, List
# ============================================================================
# TRANSFORMERS COMPATIBILITY
# ============================================================================
from transformers import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
class MixtureOfRecursionsConfig(PretrainedConfig):
"""Configuration class for MixtureOfRecursions model."""
model_type = "mixture_of_recursions"
def __init__(
self,
vocab_size=31985,
d_model=384,
n_layers=12,
n_heads=6,
max_steps=4,
dim_feedforward=2048,
dropout=0.1,
max_seq_len=128,
router_type="adaptive",
padding_idx=0,
pos_encoding="learned",
hidden_size=None,
num_hidden_layers=None,
num_attention_heads=None,
intermediate_size=None,
max_position_embeddings=None,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_model = d_model
self.n_layers = n_layers
self.n_heads = n_heads
self.max_steps = max_steps
self.dim_feedforward = dim_feedforward
self.dropout = dropout
self.max_seq_len = max_seq_len
self.router_type = router_type
self.padding_idx = padding_idx
self.pos_encoding = pos_encoding
self.hidden_size = hidden_size or d_model
self.num_hidden_layers = num_hidden_layers or n_layers
self.num_attention_heads = num_attention_heads or n_heads
self.intermediate_size = intermediate_size or dim_feedforward
self.max_position_embeddings = max_position_embeddings or max_seq_len
# ============================================================================
# EMBEDDINGS MODULE
# ============================================================================
DEFAULT_BASE = 10000.0
DEFAULT_CUTOFFS = [2000, 10000]
DEFAULT_DIV_VAL = 4.0
class PositionalEncoding(nn.Module):
"""Sinusoidal positional encoding for transformer models."""
def __init__(self, d_model: int, max_seq_len: int = 512, dropout: float = 0.1):
super().__init__()
self.d_model = d_model
self.dropout = nn.Dropout(dropout)
pe = torch.zeros(max_seq_len, d_model)
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(DEFAULT_BASE) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term[:, :-1] if d_model % 2 == 1 else div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, d_model = x.size()
if d_model != self.d_model:
raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
x = x + self.pe[:, :seq_len]
return self.dropout(x)
class LearnedPositionalEmbedding(nn.Module):
"""Learned positional embeddings for transformer models."""
def __init__(self, max_seq_len: int, d_model: int, dropout: float = 0.1):
super().__init__()
self.max_seq_len = max_seq_len
self.d_model = d_model
self.pos_embedding = nn.Embedding(max_seq_len, d_model)
self.dropout = nn.Dropout(dropout)
nn.init.normal_(self.pos_embedding.weight, std=0.02)
def forward(self, x: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, d_model = x.size()
if seq_len > self.max_seq_len:
raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}")
if d_model != self.d_model:
raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
pos_emb = self.pos_embedding(positions)
x = x + pos_emb
return self.dropout(x)
class RotaryPositionalEmbedding(nn.Module):
"""Rotary Positional Embedding (RoPE) for transformer models."""
def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = DEFAULT_BASE):
super().__init__()
self.d_model = d_model
self.max_seq_len = max_seq_len
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model))
self.register_buffer('inv_freq', inv_freq)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None:
if seq_len > self._seq_len_cached:
self._seq_len_cached = seq_len
t = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
self._cos_cached = freqs.cos().to(dtype)
self._sin_cached = freqs.sin().to(dtype)
def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)
def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_len, num_heads, head_dim = q.shape
self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype)
cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)
sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)
q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
q_rot = self._rotate_half(q, cos, sin)
k_rot = self._rotate_half(k, cos, sin)
q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
return q_rot, k_rot
class TechEmbeddingLayer(nn.Module):
"""Comprehensive embedding layer with token and positional embeddings."""
def __init__(
self,
vocab_size: int,
d_model: int,
max_seq_len: int = 512,
dropout: float = 0.1,
padding_idx: int = 0,
pos_encoding: str = "learned",
layer_norm: bool = True,
):
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.padding_idx = padding_idx
self.pos_encoding_type = pos_encoding.lower()
self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx)
if pos_encoding == "sinusoidal":
self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout)
elif pos_encoding == "learned":
self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout)
elif pos_encoding == "rope":
self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len)
else:
raise ValueError(f"Unknown positional encoding type: {pos_encoding}")
self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity()
self.dropout = nn.Dropout(dropout)
self._init_weights()
def _init_weights(self) -> None:
nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02)
if self.padding_idx is not None:
nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0)
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
if (input_ids >= self.vocab_size).any():
raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
embeddings = self.token_embedding(input_ids)
if self.pos_encoding_type != "rope":
embeddings = self.pos_encoding(embeddings)
embeddings = self.layer_norm(embeddings)
return self.dropout(embeddings)
def get_positional_encoding(self) -> Optional[nn.Module]:
return self.pos_encoding if self.pos_encoding_type == "rope" else None
def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = 0) -> torch.Tensor:
return input_ids == padding_idx
def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor:
return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool()
# ============================================================================
# MODEL CONSTANTS
# ============================================================================
DEFAULT_D_MODEL = 512
DEFAULT_N_HEADS = 8
DEFAULT_N_LAYERS = 6
DEFAULT_MAX_STEPS = 4
DEFAULT_DIM_FEEDFORWARD = 2048
DEFAULT_DROPOUT = 0.1
DEFAULT_MAX_SEQ_LEN = 512
DEFAULT_PADDING_IDX = 0
DEFAULT_ROUTER_TYPE = "adaptive"
DEFAULT_VOCAB_SIZE = 10000
# ============================================================================
# MODEL COMPONENTS
# ============================================================================
class MultiHeadAttention(nn.Module):
"""Multi-head attention mechanism optimized for technical content."""
def __init__(self, d_model: int, n_heads: int, dropout: float = DEFAULT_DROPOUT):
super().__init__()
if d_model % n_heads != 0:
raise ValueError(f"d_model ({d_model}) must be divisible by n_heads ({n_heads})")
self.d_model = d_model
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.w_q = nn.Linear(d_model, d_model, bias=False)
self.w_k = nn.Linear(d_model, d_model, bias=False)
self.w_v = nn.Linear(d_model, d_model, bias=False)
self.w_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self._init_weights()
def _init_weights(self) -> None:
for module in [self.w_q, self.w_k, self.w_v, self.w_o]:
nn.init.xavier_uniform_(module.weight)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.zeros_(module.bias)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
pos_encoding: Optional[nn.Module] = None
) -> torch.Tensor:
batch_size, seq_len, _ = query.size()
Q = self.w_q(query).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
K = self.w_k(key).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
V = self.w_v(value).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
if pos_encoding is not None:
Q, K = pos_encoding(Q, K)
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
mask = mask.unsqueeze(1).expand(batch_size, self.n_heads, seq_len, seq_len)
scores = scores.masked_fill(mask, float('-inf'))
attention_weights = F.softmax(scores, dim=-1)
attention_weights = self.dropout(attention_weights)
attended = torch.matmul(attention_weights, V)
attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
return self.w_o(attended)
class FeedForward(nn.Module):
"""Position-wise feed-forward network with GELU activation."""
def __init__(self, d_model: int, dim_feedforward: int, dropout: float = DEFAULT_DROPOUT):
super().__init__()
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout = nn.Dropout(dropout)
nn.init.xavier_uniform_(self.linear1.weight)
nn.init.zeros_(self.linear1.bias)
nn.init.xavier_uniform_(self.linear2.weight)
nn.init.zeros_(self.linear2.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.linear1(x))
x = self.dropout(x)
return self.linear2(x)
class RecursionRouter(nn.Module):
"""Router to determine recursion steps for technical problem processing."""
def __init__(self, d_model: int, max_steps: int = DEFAULT_MAX_STEPS, router_type: str = DEFAULT_ROUTER_TYPE):
super().__init__()
self.max_steps = max_steps
self.router_type = router_type.lower()
if self.router_type == "adaptive":
self.complexity_classifier = nn.Sequential(
nn.Linear(d_model, d_model // 4),
nn.GELU(),
nn.Dropout(DEFAULT_DROPOUT),
nn.Linear(d_model // 4, max_steps + 1),
nn.Softmax(dim=-1)
)
elif self.router_type == "fixed":
self.register_buffer('fixed_steps', torch.tensor(max_steps, dtype=torch.long))
else:
raise ValueError(f"Invalid router_type: {router_type}. Choose 'adaptive' or 'fixed'.")
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, int]:
if self.router_type == "adaptive":
seq_repr = x.mean(dim=1)
step_probs = self.complexity_classifier(seq_repr)
return torch.argmax(step_probs, dim=-1)
return self.fixed_steps.item()
class RecursiveTransformerLayer(nn.Module):
"""Transformer layer with recursive computation capability."""
def __init__(
self,
d_model: int,
n_heads: int,
dim_feedforward: int,
max_steps: int = DEFAULT_MAX_STEPS,
dropout: float = DEFAULT_DROPOUT,
router_type: str = DEFAULT_ROUTER_TYPE
):
super().__init__()
self.max_steps = max_steps
self.d_model = d_model
self.attention = MultiHeadAttention(d_model, n_heads, dropout)
self.feedforward = FeedForward(d_model, dim_feedforward, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.router = RecursionRouter(d_model, max_steps, router_type)
self.step_projections = nn.ModuleList([
nn.Linear(d_model, d_model) for _ in range(max_steps)
])
for proj in self.step_projections:
nn.init.xavier_uniform_(proj.weight)
nn.init.zeros_(proj.bias)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
pos_encoding: Optional[nn.Module] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
steps = self.router(x)
if isinstance(steps, (int, torch.Tensor)) and not torch.is_tensor(steps):
return self._recursive_forward_fixed(x, mask, steps, pos_encoding)
return self._recursive_forward_adaptive(x, mask, steps, pos_encoding)
def _recursive_forward_fixed(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor],
num_steps: int,
pos_encoding: Optional[nn.Module]
) -> Tuple[torch.Tensor, torch.Tensor]:
device = x.device
batch_size = x.shape[0]
computation_loss = torch.tensor(0.0, device=device)
for step in range(min(num_steps, self.max_steps)):
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
x = self.norm1(x + self.dropout(attended))
fed_forward = self.feedforward(x)
x = self.norm2(x + self.dropout(fed_forward))
computation_loss += torch.tensor(0.1, device=device) * batch_size
return x, computation_loss
def _recursive_forward_adaptive(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor],
steps: torch.Tensor,
pos_encoding: Optional[nn.Module]
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_len, d_model = x.shape
device = x.device
max_batch_steps = int(steps.max().item())
computation_loss = torch.tensor(0.0, device=device)
active_batches = torch.ones(batch_size, device=device, dtype=torch.bool)
for step in range(min(max_batch_steps, self.max_steps)):
step_mask = (steps > step) & active_batches
if not step_mask.any():
break
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
attended = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), attended, torch.zeros_like(attended))
x = self.norm1(x + self.dropout(attended))
fed_forward = self.feedforward(x)
fed_forward = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), fed_forward, torch.zeros_like(fed_forward))
x = self.norm2(x + self.dropout(fed_forward))
computation_loss += torch.tensor(0.1, device=device) * step_mask.sum()
active_batches &= (steps > step)
return x, computation_loss
# ============================================================================
# PRETRAINED MODEL WRAPPER
# ============================================================================
class MixtureOfRecursionsPreTrainedModel(PreTrainedModel):
"""PreTrainedModel wrapper for MixtureOfRecursions."""
config_class = MixtureOfRecursionsConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.d_model ** -0.5)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.d_model ** -0.5)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class MixtureOfRecursions(MixtureOfRecursionsPreTrainedModel):
"""Transformer model with mixture of recursive layers for technical content."""
def __init__(self, config: MixtureOfRecursionsConfig):
super().__init__(config)
self.config = config
self.d_model = config.d_model
self.vocab_size = config.vocab_size
self.padding_idx = config.padding_idx
self.embeddings = TechEmbeddingLayer(
vocab_size=config.vocab_size,
d_model=config.d_model,
max_seq_len=config.max_seq_len,
dropout=config.dropout,
padding_idx=config.padding_idx,
pos_encoding=config.pos_encoding
)
self.layers = nn.ModuleList([
RecursiveTransformerLayer(
d_model=config.d_model,
n_heads=config.n_heads,
dim_feedforward=config.dim_feedforward,
max_steps=config.max_steps,
dropout=config.dropout,
router_type=config.router_type
) for _ in range(config.n_layers)
])
self.final_norm = nn.LayerNorm(config.d_model)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
return_dict: bool = True
):
batch_size, seq_len = input_ids.shape
# Create masks
padding_mask = create_padding_mask(input_ids, self.padding_idx) if attention_mask is None else (attention_mask == 0)
causal_mask = create_causal_mask(seq_len, input_ids.device)
combined_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len) | causal_mask.unsqueeze(0)
# Forward pass
x = self.embeddings(input_ids)
pos_encoding = self.embeddings.get_positional_encoding()
total_computation_loss = torch.tensor(0.0, device=x.device)
for layer in self.layers:
x, comp_loss = layer(x, combined_mask, pos_encoding)
total_computation_loss += comp_loss
x = self.final_norm(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
# Shift logits and labels for language modeling
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.vocab_size), shift_labels.view(-1))
loss += 0.01 * total_computation_loss # Add computation loss
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
from transformers.modeling_outputs import CausalLMOutput
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
)
def generate_step(
self,
input_ids: torch.Tensor,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None
) -> torch.Tensor:
self.eval()
with torch.no_grad():
outputs = self.forward(input_ids, return_dict=True)
logits = outputs.logits
last_logits = logits[:, -1, :] / temperature
if top_k is not None:
indices_to_remove = last_logits < torch.topk(last_logits, top_k)[0][..., -1, None]
last_logits = last_logits.masked_fill(indices_to_remove, float('-inf'))
if top_p is not None:
sorted_logits, sorted_indices = torch.sort(last_logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = False
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
last_logits = last_logits.masked_fill(indices_to_remove, float('-inf'))
probs = F.softmax(last_logits, dim=-1)
return torch.multinomial(probs, num_samples=1)
# Register the model for auto class
MixtureOfRecursions.register_for_auto_class("AutoModelForCausalLM")
def count_parameters(model: nn.Module) -> Tuple[int, int]:
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return total_params, trainable_params
def main():
"""Test the MixtureOfRecursions model and its components."""
print("Initializing MixtureOfRecursions model...")
config = MixtureOfRecursionsConfig(
vocab_size=DEFAULT_VOCAB_SIZE,
d_model=DEFAULT_D_MODEL,
n_layers=DEFAULT_N_LAYERS,
n_heads=DEFAULT_N_HEADS,
max_steps=DEFAULT_MAX_STEPS,
dim_feedforward=DEFAULT_DIM_FEEDFORWARD,
dropout=DEFAULT_DROPOUT,
router_type=DEFAULT_ROUTER_TYPE
)
model = MixtureOfRecursions(config)
total_params, trainable_params = count_parameters(model)
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print("\nTesting forward pass...")
batch_size, seq_len = 4, 128
input_ids = torch.randint(0, DEFAULT_VOCAB_SIZE, (batch_size, seq_len))
attention_mask = torch.ones_like(input_ids)
attention_mask[:, -10:] = 0
outputs = model(input_ids, attention_mask, return_dict=True)
logits = outputs.logits
assert logits.shape == (batch_size, seq_len, DEFAULT_VOCAB_SIZE), f"Unexpected logits shape: {logits.shape}"
print(f"Input shape: {input_ids.shape}")
print(f"Output logits shape: {logits.shape}")
print(f"Expected logits shape: ({batch_size}, {seq_len}, {DEFAULT_VOCAB_SIZE})")
print("\nTesting generation step...")
next_token = model.generate_step(input_ids[:1], temperature=0.8, top_p=0.9)
print(f"Generated next token: {next_token.item()}")
print("\nModel test completed successfully!")
if __name__ == "__main__":
main() |