Create model_slm.py
Browse files- model_slm.py +302 -0
model_slm.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from embeddings import TechEmbeddingLayer, create_padding_mask, create_causal_mask
|
| 6 |
+
class MultiHeadAttention(nn.Module):
|
| 7 |
+
"""Multi-head attention mechanism optimized for technical content"""
|
| 8 |
+
def __init__(self, d_model, n_heads, dropout=0.1):
|
| 9 |
+
super(MultiHeadAttention, self).__init__()
|
| 10 |
+
assert d_model % n_heads == 0
|
| 11 |
+
self.d_model = d_model
|
| 12 |
+
self.n_heads = n_heads
|
| 13 |
+
self.d_k = d_model // n_heads
|
| 14 |
+
self.w_q = nn.Linear(d_model, d_model, bias=False)
|
| 15 |
+
self.w_k = nn.Linear(d_model, d_model, bias=False)
|
| 16 |
+
self.w_v = nn.Linear(d_model, d_model, bias=False)
|
| 17 |
+
self.w_o = nn.Linear(d_model, d_model)
|
| 18 |
+
self.dropout = nn.Dropout(dropout)
|
| 19 |
+
self._init_weights()
|
| 20 |
+
def _init_weights(self):
|
| 21 |
+
"""Initialize weights with Xavier uniform"""
|
| 22 |
+
for module in [self.w_q, self.w_k, self.w_v, self.w_o]:
|
| 23 |
+
nn.init.xavier_uniform_(module.weight)
|
| 24 |
+
def forward(self, query, key, value, mask=None, pos_encoding=None):
|
| 25 |
+
batch_size, seq_len, d_model = query.size()
|
| 26 |
+
Q = self.w_q(query).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 27 |
+
K = self.w_k(key).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 28 |
+
V = self.w_v(value).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 29 |
+
if pos_encoding is not None:
|
| 30 |
+
Q, K = pos_encoding(Q, K)
|
| 31 |
+
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
|
| 32 |
+
if mask is not None:
|
| 33 |
+
mask = mask.unsqueeze(1).expand(batch_size, self.n_heads, seq_len, seq_len)
|
| 34 |
+
scores.masked_fill_(mask, float('-inf'))
|
| 35 |
+
attention_weights = F.softmax(scores, dim=-1)
|
| 36 |
+
attention_weights = self.dropout(attention_weights)
|
| 37 |
+
attended = torch.matmul(attention_weights, V)
|
| 38 |
+
attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
|
| 39 |
+
output = self.w_o(attended)
|
| 40 |
+
return output
|
| 41 |
+
class FeedForward(nn.Module):
|
| 42 |
+
"""Position-wise feed forward network with GELU activation"""
|
| 43 |
+
def __init__(self, d_model, dim_feedforward, dropout=0.1):
|
| 44 |
+
super(FeedForward, self).__init__()
|
| 45 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 46 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 47 |
+
self.dropout = nn.Dropout(dropout)
|
| 48 |
+
nn.init.xavier_uniform_(self.linear1.weight)
|
| 49 |
+
nn.init.xavier_uniform_(self.linear2.weight)
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
x = F.gelu(self.linear1(x))
|
| 52 |
+
x = self.dropout(x)
|
| 53 |
+
x = self.linear2(x)
|
| 54 |
+
return x
|
| 55 |
+
class RecursionRouter(nn.Module):
|
| 56 |
+
"""Router to decide recursion steps for different types of technical problems"""
|
| 57 |
+
def __init__(self, d_model, max_steps=4, router_type="adaptive"):
|
| 58 |
+
super(RecursionRouter, self).__init__()
|
| 59 |
+
self.max_steps = max_steps
|
| 60 |
+
self.router_type = router_type
|
| 61 |
+
if router_type == "adaptive":
|
| 62 |
+
self.complexity_classifier = nn.Sequential(
|
| 63 |
+
nn.Linear(d_model, d_model // 4),
|
| 64 |
+
nn.GELU(),
|
| 65 |
+
nn.Dropout(0.1),
|
| 66 |
+
nn.Linear(d_model // 4, max_steps + 1),
|
| 67 |
+
nn.Softmax(dim=-1)
|
| 68 |
+
)
|
| 69 |
+
elif router_type == "fixed":
|
| 70 |
+
self.fixed_steps = max_steps
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
if self.router_type == "adaptive":
|
| 73 |
+
seq_repr = x.mean(dim=1)
|
| 74 |
+
step_probs = self.complexity_classifier(seq_repr)
|
| 75 |
+
steps = torch.argmax(step_probs, dim=-1)
|
| 76 |
+
return steps
|
| 77 |
+
return self.fixed_steps
|
| 78 |
+
class RecursiveTransformerLayer(nn.Module):
|
| 79 |
+
"""Transformer layer with recursive computation capability"""
|
| 80 |
+
def __init__(self, d_model, n_heads, dim_feedforward, max_steps=4,
|
| 81 |
+
dropout=0.1, router_type="adaptive"):
|
| 82 |
+
super(RecursiveTransformerLayer, self).__init__()
|
| 83 |
+
self.max_steps = max_steps
|
| 84 |
+
self.d_model = d_model
|
| 85 |
+
self.attention = MultiHeadAttention(d_model, n_heads, dropout)
|
| 86 |
+
self.feedforward = FeedForward(d_model, dim_feedforward, dropout)
|
| 87 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 88 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 89 |
+
self.dropout = nn.Dropout(dropout)
|
| 90 |
+
self.router = RecursionRouter(d_model, max_steps, router_type)
|
| 91 |
+
self.step_projections = nn.ModuleList([
|
| 92 |
+
nn.Linear(d_model, d_model) for _ in range(max_steps)
|
| 93 |
+
])
|
| 94 |
+
def forward(self, x, mask=None, pos_encoding=None):
|
| 95 |
+
steps = self.router(x)
|
| 96 |
+
if isinstance(steps, int):
|
| 97 |
+
num_steps = min(steps, self.max_steps)
|
| 98 |
+
return self._recursive_forward_fixed(x, mask, num_steps, pos_encoding)
|
| 99 |
+
return self._recursive_forward_adaptive(x, mask, steps, pos_encoding)
|
| 100 |
+
def _recursive_forward_fixed(self, x, mask, num_steps, pos_encoding):
|
| 101 |
+
device = x.device
|
| 102 |
+
batch_size = x.shape[0]
|
| 103 |
+
computation_loss = torch.tensor(0.0, device=device)
|
| 104 |
+
for step in range(num_steps):
|
| 105 |
+
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
|
| 106 |
+
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
|
| 107 |
+
x = self.norm1(x + self.dropout(attended))
|
| 108 |
+
fed_forward = self.feedforward(x)
|
| 109 |
+
x = self.norm2(x + self.dropout(fed_forward))
|
| 110 |
+
computation_loss += torch.tensor(0.1, device=device) * batch_size
|
| 111 |
+
return x, computation_loss
|
| 112 |
+
def _recursive_forward_adaptive(self, x, mask, steps, pos_encoding):
|
| 113 |
+
batch_size, seq_len, d_model = x.shape
|
| 114 |
+
device = x.device
|
| 115 |
+
max_batch_steps = int(steps.max().item())
|
| 116 |
+
computation_loss = torch.tensor(0.0, device=device)
|
| 117 |
+
active_batches = torch.ones(batch_size, device=device, dtype=torch.bool)
|
| 118 |
+
for step in range(max_batch_steps):
|
| 119 |
+
step_mask = (steps > step) & active_batches
|
| 120 |
+
if not step_mask.any():
|
| 121 |
+
break
|
| 122 |
+
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
|
| 123 |
+
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
|
| 124 |
+
attended = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), attended, torch.zeros_like(attended))
|
| 125 |
+
x = self.norm1(x + self.dropout(attended))
|
| 126 |
+
fed_forward = self.feedforward(x)
|
| 127 |
+
fed_forward = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), fed_forward, torch.zeros_like(fed_forward))
|
| 128 |
+
x = self.norm2(x + self.dropout(fed_forward))
|
| 129 |
+
computation_loss += torch.tensor(0.1, device=device) * step_mask.sum()
|
| 130 |
+
active_batches &= (steps > step)
|
| 131 |
+
return x, computation_loss
|
| 132 |
+
class MixtureOfRecursions(nn.Module):
|
| 133 |
+
"""Main model with mixture of recursive transformer layers"""
|
| 134 |
+
def __init__(self, vocab_size, d_model=512, n_layers=6, n_heads=8,
|
| 135 |
+
max_steps=4, dim_feedforward=2048, dropout=0.1,
|
| 136 |
+
max_seq_len=512, router_type="adaptive", padding_idx=0):
|
| 137 |
+
super(MixtureOfRecursions, self).__init__()
|
| 138 |
+
self.d_model = d_model
|
| 139 |
+
self.vocab_size = vocab_size
|
| 140 |
+
self.padding_idx = padding_idx
|
| 141 |
+
self.embeddings = TechEmbeddingLayer(
|
| 142 |
+
vocab_size=vocab_size,
|
| 143 |
+
d_model=d_model,
|
| 144 |
+
max_seq_len=max_seq_len,
|
| 145 |
+
dropout=dropout,
|
| 146 |
+
padding_idx=padding_idx,
|
| 147 |
+
pos_encoding="learned"
|
| 148 |
+
)
|
| 149 |
+
self.layers = nn.ModuleList([
|
| 150 |
+
RecursiveTransformerLayer(
|
| 151 |
+
d_model=d_model,
|
| 152 |
+
n_heads=n_heads,
|
| 153 |
+
dim_feedforward=dim_feedforward,
|
| 154 |
+
max_steps=max_steps,
|
| 155 |
+
dropout=dropout,
|
| 156 |
+
router_type=router_type
|
| 157 |
+
) for _ in range(n_layers)
|
| 158 |
+
])
|
| 159 |
+
self.final_norm = nn.LayerNorm(d_model)
|
| 160 |
+
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
|
| 161 |
+
self._init_weights()
|
| 162 |
+
def _init_weights(self):
|
| 163 |
+
nn.init.xavier_uniform_(self.lm_head.weight)
|
| 164 |
+
def forward(self, input_ids, attention_mask=None):
|
| 165 |
+
batch_size, seq_len = input_ids.shape
|
| 166 |
+
padding_mask = create_padding_mask(input_ids, self.padding_idx) if attention_mask is None else (attention_mask == 0)
|
| 167 |
+
causal_mask = create_causal_mask(seq_len, input_ids.device)
|
| 168 |
+
padding_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
|
| 169 |
+
combined_mask = padding_mask | causal_mask.unsqueeze(0)
|
| 170 |
+
x = self.embeddings(input_ids)
|
| 171 |
+
pos_encoding = self.embeddings.get_positional_encoding()
|
| 172 |
+
device = x.device
|
| 173 |
+
total_computation_loss = torch.tensor(0.0, device=device)
|
| 174 |
+
for layer in self.layers:
|
| 175 |
+
x, comp_loss = layer(x, combined_mask, pos_encoding)
|
| 176 |
+
total_computation_loss += comp_loss
|
| 177 |
+
x = self.final_norm(x)
|
| 178 |
+
logits = self.lm_head(x)
|
| 179 |
+
return logits, total_computation_loss
|
| 180 |
+
def generate_step(self, input_ids, temperature=1.0, top_k=None, top_p=None):
|
| 181 |
+
self.eval()
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
logits, _ = self.forward(input_ids)
|
| 184 |
+
last_logits = logits[:, -1, :] / temperature
|
| 185 |
+
if top_k is not None:
|
| 186 |
+
indices_to_remove = last_logits < torch.topk(last_logits, top_k)[0][..., -1, None]
|
| 187 |
+
last_logits[indices_to_remove] = float('-inf')
|
| 188 |
+
if top_p is not None:
|
| 189 |
+
sorted_logits, sorted_indices = torch.sort(last_logits, descending=True)
|
| 190 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 191 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 192 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 193 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 194 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 195 |
+
last_logits[indices_to_remove] = float('-inf')
|
| 196 |
+
probs = F.softmax(last_logits, dim=-1)
|
| 197 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 198 |
+
return next_token
|
| 199 |
+
class TextGenerator:
|
| 200 |
+
"""Text generation utility for the tech model"""
|
| 201 |
+
def __init__(self, model, tokenizer, max_length=100, device=None):
|
| 202 |
+
self.model = model
|
| 203 |
+
self.tokenizer = tokenizer
|
| 204 |
+
self.max_length = max_length
|
| 205 |
+
self.device = device if device else next(model.parameters()).device
|
| 206 |
+
self.model.to(self.device)
|
| 207 |
+
self.eos_token_id = tokenizer.vocab.get('<|endoftext|>', -1)
|
| 208 |
+
self.assistant_token_id = tokenizer.vocab.get('<|assistant|>', -1)
|
| 209 |
+
def generate(self, prompt, method="nucleus", temperature=1.0, top_k=50, top_p=0.9, max_new_tokens=None):
|
| 210 |
+
if max_new_tokens is None:
|
| 211 |
+
max_new_tokens = self.max_length
|
| 212 |
+
input_text = f"<|user|> {prompt}"
|
| 213 |
+
input_ids = self.tokenizer.encode_ids(input_text, add_special_tokens=True)
|
| 214 |
+
input_tensor = torch.tensor([input_ids], device=self.device)
|
| 215 |
+
self.model.eval()
|
| 216 |
+
generated_ids = []
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
for _ in range(max_new_tokens):
|
| 219 |
+
if input_tensor.size(1) > self.max_length:
|
| 220 |
+
input_tensor = input_tensor[:, -self.max_length:]
|
| 221 |
+
# Generate next token
|
| 222 |
+
if method == "greedy":
|
| 223 |
+
next_token = self._greedy_generate(input_tensor)
|
| 224 |
+
elif method == "sample":
|
| 225 |
+
next_token = self._sample_generate(input_tensor, temperature)
|
| 226 |
+
elif method == "top_k":
|
| 227 |
+
next_token = self._top_k_generate(input_tensor, temperature, top_k)
|
| 228 |
+
elif method == "nucleus" or method == "top_p":
|
| 229 |
+
next_token = self._nucleus_generate(input_tensor, temperature, top_p)
|
| 230 |
+
else:
|
| 231 |
+
raise ValueError(f"Unknown generation method: {method}")
|
| 232 |
+
next_token_id = next_token.item()
|
| 233 |
+
generated_ids.append(next_token_id)
|
| 234 |
+
input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
|
| 235 |
+
if next_token_id == self.eos_token_id or (self.assistant_token_id != -1 and next_token_id == self.assistant_token_id):
|
| 236 |
+
break
|
| 237 |
+
# Decode the full sequence
|
| 238 |
+
full_ids = input_ids + generated_ids
|
| 239 |
+
full_text = self.tokenizer.decode_ids(full_ids, skip_special_tokens=False)
|
| 240 |
+
# Extract assistant response
|
| 241 |
+
if "<|assistant|>" in full_text:
|
| 242 |
+
response = full_text.split("<|assistant|>")[-1].split("<|endoftext|>")[0].strip()
|
| 243 |
+
else:
|
| 244 |
+
response = full_text.split("<|endoftext|>")[0].strip()
|
| 245 |
+
return response if response else "No response generated."
|
| 246 |
+
def _greedy_generate(self, input_tensor):
|
| 247 |
+
logits, _ = self.model(input_tensor)
|
| 248 |
+
return torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
| 249 |
+
def _sample_generate(self, input_tensor, temperature):
|
| 250 |
+
logits, _ = self.model(input_tensor)
|
| 251 |
+
logits = logits[:, -1, :] / temperature
|
| 252 |
+
probs = F.softmax(logits, dim=-1)
|
| 253 |
+
return torch.multinomial(probs, num_samples=1)
|
| 254 |
+
def _top_k_generate(self, input_tensor, temperature, top_k):
|
| 255 |
+
logits, _ = self.model(input_tensor)
|
| 256 |
+
logits = logits[:, -1, :] / temperature
|
| 257 |
+
top_k_logits, top_k_indices = torch.topk(logits, top_k)
|
| 258 |
+
probs = F.softmax(top_k_logits, dim=-1)
|
| 259 |
+
next_token_idx = torch.multinomial(probs, num_samples=1)
|
| 260 |
+
return top_k_indices.gather(-1, next_token_idx)
|
| 261 |
+
def _nucleus_generate(self, input_tensor, temperature, top_p):
|
| 262 |
+
return self.model.generate_step(input_tensor, temperature, top_p=top_p)
|
| 263 |
+
def count_parameters(model):
|
| 264 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 265 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 266 |
+
return total_params, trainable_params
|
| 267 |
+
def main():
|
| 268 |
+
vocab_size = 10000
|
| 269 |
+
d_model = 512
|
| 270 |
+
n_layers = 6
|
| 271 |
+
n_heads = 8
|
| 272 |
+
seq_len = 128
|
| 273 |
+
batch_size = 4
|
| 274 |
+
print("Initializing MixtureOfRecursions model...")
|
| 275 |
+
model = MixtureOfRecursions(
|
| 276 |
+
vocab_size=vocab_size,
|
| 277 |
+
d_model=d_model,
|
| 278 |
+
n_layers=n_layers,
|
| 279 |
+
n_heads=n_heads,
|
| 280 |
+
max_steps=4,
|
| 281 |
+
dim_feedforward=2048,
|
| 282 |
+
dropout=0.1,
|
| 283 |
+
router_type="adaptive"
|
| 284 |
+
)
|
| 285 |
+
total_params, trainable_params = count_parameters(model)
|
| 286 |
+
print(f"Total parameters: {total_params:,}")
|
| 287 |
+
print(f"Trainable parameters: {trainable_params:,}")
|
| 288 |
+
print("\nTesting forward pass...")
|
| 289 |
+
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len))
|
| 290 |
+
attention_mask = torch.ones_like(input_ids)
|
| 291 |
+
attention_mask[:, -10:] = 0
|
| 292 |
+
print(f"Input shape: {input_ids.shape}")
|
| 293 |
+
logits, comp_loss = model(input_ids, attention_mask)
|
| 294 |
+
print(f"Output logits shape: {logits.shape}")
|
| 295 |
+
print(f"Computation loss: {comp_loss}")
|
| 296 |
+
print(f"Expected logits shape: ({batch_size}, {seq_len}, {vocab_size})")
|
| 297 |
+
print("\nTesting generation step...")
|
| 298 |
+
next_token = model.generate_step(input_ids[:1], temperature=0.8, top_p=0.9)
|
| 299 |
+
print(f"Generated next token: {next_token}")
|
| 300 |
+
print("\nModel test completed successfully!")
|
| 301 |
+
if __name__ == "__main__":
|
| 302 |
+
main()
|