File size: 26,111 Bytes
c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 16896b6 c2b8ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torch.cuda.amp import GradScaler, autocast
import os
import json
import argparse
import time
import math
import glob
from typing import Dict, List, Optional
from tqdm import tqdm
import numpy as np
import gc
import logging
from collections import defaultdict
import multiprocessing
# Import custom modules
try:
from model_slm import MixtureOfRecursions, count_parameters, TextGenerator
from custom_tokenizer import TechnicalTokenizer
except ImportError as e:
raise ImportError(f"Failed to import custom modules: {e}")
# Constants for configuration
DEFAULT_MAX_LENGTH = 128
DEFAULT_MAX_EXAMPLES = 50000
DEFAULT_D_MODEL = 384
DEFAULT_N_LAYERS = 6
DEFAULT_N_HEADS = 6
DEFAULT_EPOCHS = 15
DEFAULT_BATCH_SIZE = 16
DEFAULT_LEARNING_RATE = 5e-4
DEFAULT_GRAD_ACCUM_STEPS = 1
DEFAULT_EVAL_EVERY = 500
DEFAULT_WARMUP_RATIO = 0.05
DEFAULT_CHECKPOINT_DIR = "checkpoints"
DEFAULT_LOG_LEVEL = "INFO"
# Set up logging
logging.basicConfig(
level=DEFAULT_LOG_LEVEL,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler(),
logging.FileHandler("training.log")
]
)
logger = logging.getLogger(__name__)
class FastTechnicalTextDataset(Dataset):
"""Optimized dataset for fast loading and processing of technical text."""
def __init__(
self,
data_file: str,
tokenizer: TechnicalTokenizer,
max_length: int = DEFAULT_MAX_LENGTH,
max_examples: int = DEFAULT_MAX_EXAMPLES
):
"""
Initialize the dataset with optimized loading.
Args:
data_file (str): Path to the training data file.
tokenizer (TechnicalTokenizer): Tokenizer for encoding text.
max_length (int): Maximum sequence length.
max_examples (int): Maximum number of examples to load.
Raises:
FileNotFoundError: If the data file does not exist.
ValueError: If max_length or max_examples is invalid.
"""
if not os.path.exists(data_file):
raise FileNotFoundError(f"Data file not found: {data_file}")
if max_length <= 0 or max_examples <= 0:
raise ValueError("max_length and max_examples must be positive")
self.tokenizer = tokenizer
self.max_length = max_length
self.pad_token_id = tokenizer.vocab.get('<pad>', 0)
self.max_examples = max_examples
self.examples = []
logger.info(f"Loading dataset from {data_file} with max_length={max_length}, max_examples={max_examples}")
start_time = time.time()
self._fast_load_data(data_file)
self._tensorize_data()
logger.info(f"Loaded {len(self.examples)} examples in {time.time() - start_time:.1f}s")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def _fast_load_data(self, data_file: str) -> None:
"""Load and filter data efficiently."""
logger.info("Reading and filtering data...")
with open(data_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
logger.info(f"File contains {len(lines)} lines")
good_examples = []
seen_hashes = set()
for line in lines[:self.max_examples * 3]:
line = line.strip()
if (
50 <= len(line) <= 400 and
line.count(' ') >= 8 and
not line.lower().startswith(('http', 'www', 'ftp')) and
line.count('.') <= len(line) * 0.1
):
line_hash = hash(line[:100])
if line_hash not in seen_hashes:
seen_hashes.add(line_hash)
good_examples.append(line)
if len(good_examples) >= self.max_examples:
break
logger.info(f"Filtered to {len(good_examples)} quality examples")
batch_size = 1000
for i in range(0, len(good_examples), batch_size):
batch = good_examples[i:i + batch_size]
for line in batch:
try:
if not line.endswith('<|endoftext|>'):
line += ' <|endoftext|>'
tokens = self.tokenizer.encode_ids(line, add_special_tokens=True)
if 30 <= len(tokens) <= self.max_length:
if len(tokens) < self.max_length:
tokens.extend([self.pad_token_id] * (self.max_length - len(tokens)))
self.examples.append(tokens)
except Exception as e:
logger.warning(f"Failed to process line: {e}")
continue
if i % 5000 == 0:
logger.info(f"Processed {len(self.examples)} examples...")
logger.info(f"Final dataset size: {len(self.examples)} examples")
def _tensorize_data(self) -> None:
"""Pre-tensorize data for faster training."""
logger.info("Pre-tensorizing data...")
seq_len = self.max_length - 1
tensorized_examples = []
for tokens in self.examples:
if len(tokens) != self.max_length:
continue
input_ids = torch.tensor(tokens[:-1], dtype=torch.long)
targets = torch.tensor(tokens[1:], dtype=torch.long)
original_len = next((i for i, x in enumerate(tokens) if x == self.pad_token_id), self.max_length)
mask_len = min(original_len, seq_len)
attention_mask = torch.zeros(seq_len, dtype=torch.long)
attention_mask[:mask_len] = 1
tensorized_examples.append({
'input_ids': input_ids,
'targets': targets,
'attention_mask': attention_mask
})
self.examples = tensorized_examples
logger.info("Data pre-tensorized successfully")
def __len__(self) -> int:
"""Return the number of examples in the dataset."""
return len(self.examples)
def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
"""Return a single example from the dataset."""
return self.examples[idx]
class FastCosineScheduler:
"""Cosine learning rate scheduler with warmup."""
def __init__(self, optimizer: optim.Optimizer, total_steps: int, warmup_ratio: float = DEFAULT_WARMUP_RATIO):
"""
Initialize the cosine scheduler.
Args:
optimizer (optim.Optimizer): Optimizer to schedule.
total_steps (int): Total training steps.
warmup_ratio (float): Ratio of steps for warmup phase.
Raises:
ValueError: If total_steps or warmup_ratio is invalid.
"""
if total_steps <= 0 or not 0 <= warmup_ratio <= 1:
raise ValueError("total_steps must be positive and warmup_ratio must be in [0, 1]")
self.optimizer = optimizer
self.total_steps = total_steps
self.warmup_steps = int(total_steps * warmup_ratio)
self.base_lr = optimizer.param_groups[0]['lr']
self.step_count = 0
def step(self) -> float:
"""
Update the learning rate.
Returns:
float: Current learning rate.
"""
self.step_count += 1
if self.step_count <= self.warmup_steps:
lr = self.base_lr * self.step_count / self.warmup_steps
else:
progress = (self.step_count - self.warmup_steps) / (self.total_steps - self.warmup_steps)
lr = self.base_lr * 0.5 * (1 + math.cos(math.pi * progress))
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
class UltraFastTrainer:
"""Trainer optimized for fast training of transformer models."""
def __init__(
self,
model: nn.Module,
tokenizer: TechnicalTokenizer,
train_dataset: FastTechnicalTextDataset,
val_dataset: Optional[FastTechnicalTextDataset] = None,
config: Optional[Dict] = None
):
"""
Initialize the trainer.
Args:
model (nn.Module): The transformer model to train.
tokenizer (TechnicalTokenizer): Tokenizer for encoding/decoding.
train_dataset (FastTechnicalTextDataset): Training dataset.
val_dataset (Optional[FastTechnicalTextDataset]): Validation dataset.
config (Optional[Dict]): Training configuration.
Raises:
ValueError: If config contains invalid parameters.
"""
self.model = model
self.tokenizer = tokenizer
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.config = config or {}
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self._validate_config()
self._fast_init_weights()
self._setup_fast_optimizer()
epochs = self.config.get('epochs', DEFAULT_EPOCHS)
batch_size = self.config.get('batch_size', DEFAULT_BATCH_SIZE)
total_steps = len(train_dataset) // batch_size * epochs
self.scheduler = FastCosineScheduler(self.optimizer, total_steps)
self.scaler = GradScaler() if self.device.type == 'cuda' else None
self.global_step = 0
self.best_loss = float('inf')
self.grad_accum_steps = self.config.get('gradient_accumulation_steps', DEFAULT_GRAD_ACCUM_STEPS)
self.eval_every = self.config.get('eval_every', DEFAULT_EVAL_EVERY)
def _validate_config(self) -> None:
"""Validate training configuration."""
if self.config.get('batch_size', DEFAULT_BATCH_SIZE) <= 0:
raise ValueError("batch_size must be positive")
if self.config.get('epochs', DEFAULT_EPOCHS) <= 0:
raise ValueError("epochs must be positive")
if self.config.get('learning_rate', DEFAULT_LEARNING_RATE) <= 0:
raise ValueError("learning_rate must be positive")
if self.config.get('gradient_accumulation_steps', DEFAULT_GRAD_ACCUM_STEPS) <= 0:
raise ValueError("gradient_accumulation_steps must be positive")
def _fast_init_weights(self) -> None:
"""Initialize model weights."""
def fast_init(module: nn.Module) -> None:
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=0.02)
self.model.apply(fast_init)
logger.info("Model weights initialized")
def _setup_fast_optimizer(self) -> None:
"""Set up AdamW optimizer."""
lr = self.config.get('learning_rate', DEFAULT_LEARNING_RATE)
params = [p for p in self.model.parameters() if p.requires_grad]
self.optimizer = optim.AdamW(params, lr=lr, betas=(0.9, 0.99), weight_decay=0.01, eps=1e-6)
logger.info(f"Optimizer initialized with learning rate: {lr}")
def compute_fast_loss(self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""
Compute masked cross-entropy loss.
Args:
logits (torch.Tensor): Model output logits of shape (batch_size, seq_len, vocab_size).
targets (torch.Tensor): Target token IDs of shape (batch_size, seq_len).
mask (torch.Tensor): Attention mask of shape (batch_size, seq_len).
Returns:
torch.Tensor: Computed loss.
"""
logits_flat = logits.view(-1, logits.size(-1))
targets_flat = targets.view(-1)
mask_flat = mask.view(-1).bool()
if not mask_flat.any():
return torch.tensor(0.0, device=logits.device, requires_grad=True)
return F.cross_entropy(logits_flat[mask_flat], targets_flat[mask_flat])
def train_epoch_fast(self, epoch: int, dataloader: DataLoader) -> Dict[str, float]:
"""
Train for one epoch.
Args:
epoch (int): Current epoch number.
dataloader (DataLoader): Training data loader.
Returns:
Dict[str, float]: Training metrics (loss, perplexity, epoch_time_min).
"""
self.model.train()
total_loss = 0
num_batches = 0
start_time = time.time()
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}", leave=False, miniters=50)
for batch_idx, batch in enumerate(progress_bar):
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
targets = batch['targets'].to(self.device, non_blocking=True)
mask = batch['attention_mask'].to(self.device, non_blocking=True)
with autocast(enabled=self.device.type == 'cuda'):
logits, comp_loss = self.model(input_ids, mask)
lm_loss = self.compute_fast_loss(logits, targets, mask)
total_loss_step = lm_loss + 0.0001 * comp_loss
if self.grad_accum_steps > 1:
total_loss_step = total_loss_step / self.grad_accum_steps
if self.scaler:
self.scaler.scale(total_loss_step).backward()
if (batch_idx + 1) % self.grad_accum_steps == 0:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad(set_to_none=True)
self.scheduler.step()
self.global_step += 1
else:
total_loss_step.backward()
if (batch_idx + 1) % self.grad_accum_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.optimizer.zero_grad(set_to_none=True)
self.scheduler.step()
self.global_step += 1
total_loss += lm_loss.item()
num_batches += 1
if batch_idx % 100 == 0:
current_loss = total_loss / num_batches
progress_bar.set_postfix({'loss': f"{current_loss:.3f}", 'ppl': f"{math.exp(min(current_loss, 10)):.1f}"})
if batch_idx % 200 == 0 and batch_idx > 0 and self.device.type == 'cuda':
torch.cuda.empty_cache()
avg_loss = total_loss / max(num_batches, 1)
return {
'loss': avg_loss,
'perplexity': math.exp(min(avg_loss, 10)),
'epoch_time_min': (time.time() - start_time) / 60
}
def validate_fast(self, dataloader: DataLoader) -> Dict[str, float]:
"""
Validate the model on the validation dataset.
Args:
dataloader (DataLoader): Validation data loader.
Returns:
Dict[str, float]: Validation metrics (loss, perplexity).
"""
self.model.eval()
total_loss = 0
num_batches = 0
max_val_batches = min(100, len(dataloader))
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader):
if batch_idx >= max_val_batches:
break
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
targets = batch['targets'].to(self.device, non_blocking=True)
mask = batch['attention_mask'].to(self.device, non_blocking=True)
with autocast(enabled=self.device.type == 'cuda'):
logits, _ = self.model(input_ids, mask)
loss = self.compute_fast_loss(logits, targets, mask)
total_loss += loss.item()
num_batches += 1
avg_loss = total_loss / max(num_batches, 1)
return {'loss': avg_loss, 'perplexity': math.exp(min(avg_loss, 10))}
def save_checkpoint_fast(self, epoch: int, metrics: Dict, save_dir: str = DEFAULT_CHECKPOINT_DIR) -> Optional[str]:
"""
Save a checkpoint if the loss improves.
Args:
epoch (int): Current epoch number.
metrics (Dict): Training and validation metrics.
save_dir (str): Directory to save checkpoints.
Returns:
Optional[str]: Path to the saved checkpoint or None.
"""
os.makedirs(save_dir, exist_ok=True)
val_loss = metrics.get('val_loss', metrics.get('loss', float('inf')))
if val_loss < self.best_loss:
self.best_loss = val_loss
checkpoint = {
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'metrics': metrics,
'scaler_state_dict': self.scaler.state_dict() if self.scaler else None
}
best_path = os.path.join(save_dir, "best_model.pt")
torch.save(checkpoint, best_path)
logger.info(f"New best checkpoint saved: {best_path}, Loss: {val_loss:.4f}")
return best_path
return None
def train_ultra_fast(self, num_epochs: int = DEFAULT_EPOCHS, batch_size: int = DEFAULT_BATCH_SIZE) -> List[Dict]:
"""
Train the model with optimized settings.
Args:
num_epochs (int): Number of training epochs.
batch_size (int): Batch size for training.
Returns:
List[Dict]: Training history with metrics for each epoch.
"""
logger.info(f"Starting ultra-fast training: {num_epochs} epochs, batch_size={batch_size}")
logger.info("Target: Loss < 2.0, PPL < 12, Time: 4-5 hours")
train_loader = DataLoader(
self.train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=min(multiprocessing.cpu_count(), 4),
pin_memory=self.device.type == 'cuda',
persistent_workers=True,
drop_last=True
)
val_loader = None
if self.val_dataset:
val_loader = DataLoader(
self.val_dataset,
batch_size=batch_size * 2,
shuffle=False,
num_workers=min(multiprocessing.cpu_count() // 2, 2),
pin_memory=self.device.type == 'cuda'
)
total_start_time = time.time()
history = []
for epoch in range(1, num_epochs + 1):
logger.info(f"Starting epoch {epoch}/{num_epochs}")
train_metrics = self.train_epoch_fast(epoch, train_loader)
val_metrics = {}
if val_loader and (epoch % 2 == 0 or epoch == num_epochs):
val_metrics = self.validate_fast(val_loader)
epoch_time = train_metrics['epoch_time_min'] * 60
epoch_info = {
'epoch': epoch,
'train_loss': train_metrics['loss'],
'train_ppl': train_metrics['perplexity'],
'epoch_time_min': train_metrics['epoch_time_min']
}
if val_metrics:
epoch_info.update({'val_loss': val_metrics['loss'], 'val_ppl': val_metrics['perplexity']})
history.append(epoch_info)
elapsed_hours = (time.time() - total_start_time) / 3600
remaining_hours = elapsed_hours * (num_epochs - epoch) / max(epoch, 1)
logger.info(f"Epoch {epoch} results:")
logger.info(f" Epoch time: {epoch_time/60:.1f} min")
logger.info(f" Total elapsed: {elapsed_hours:.1f}h")
logger.info(f" Est. remaining: {remaining_hours:.1f}h")
logger.info(f" Train Loss: {train_metrics['loss']:.4f}")
logger.info(f" Train PPL: {train_metrics['perplexity']:.1f}")
if val_metrics:
logger.info(f" Val Loss: {val_metrics['loss']:.4f}")
logger.info(f" Val PPL: {val_metrics['perplexity']:.1f}")
current_loss = val_metrics.get('loss', train_metrics['loss'])
current_ppl = val_metrics.get('perplexity', train_metrics['perplexity'])
if current_loss < 2.0 and current_ppl < 12:
logger.info(f"Targets achieved: Loss={current_loss:.4f} < 2.0, PPL={current_ppl:.1f} < 12")
combined_metrics = {**train_metrics}
if val_metrics:
combined_metrics.update({f"val_{k}": v for k, v in val_metrics.items()})
self.save_checkpoint_fast(epoch, combined_metrics)
if self.device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
if current_loss < 1.8 and current_ppl < 10:
logger.info("Early stopping: Excellent performance achieved!")
break
total_time = (time.time() - total_start_time) / 3600
logger.info(f"Training completed in {total_time:.1f} hours")
logger.info(f"Best loss: {self.best_loss:.4f}")
return history
def run_ultra_fast_training() -> int:
"""
Run the ultra-fast training pipeline.
Returns:
int: Exit code (0 for success, 1 for failure).
"""
parser = argparse.ArgumentParser(description="Ultra-Fast Training for MixtureOfRecursions Model")
parser.add_argument("--train_file", default=None, help="Path to training data file")
parser.add_argument("--val_file", default=None, help="Path to validation data file")
parser.add_argument("--tokenizer_dir", default="tokenizer", help="Directory for tokenizer files")
parser.add_argument("--max_examples", type=int, default=DEFAULT_MAX_EXAMPLES, help="Maximum number of training examples")
parser.add_argument("--d_model", type=int, default=DEFAULT_D_MODEL, help="Model embedding dimension")
parser.add_argument("--n_layers", type=int, default=DEFAULT_N_LAYERS, help="Number of transformer layers")
parser.add_argument("--n_heads", type=int, default=DEFAULT_N_HEADS, help="Number of attention heads")
parser.add_argument("--max_seq_len", type=int, default=DEFAULT_MAX_LENGTH, help="Maximum sequence length")
parser.add_argument("--epochs", type=int, default=DEFAULT_EPOCHS, help="Number of training epochs")
parser.add_argument("--batch_size", type=int, default=DEFAULT_BATCH_SIZE, help="Batch size for training")
parser.add_argument("--learning_rate", type=float, default=DEFAULT_LEARNING_RATE, help="Learning rate")
parser.add_argument("--gradient_accumulation_steps", type=int, default=DEFAULT_GRAD_ACCUM_STEPS, help="Gradient accumulation steps")
parser.add_argument("--eval_every", type=int, default=DEFAULT_EVAL_EVERY, help="Evaluate every N steps")
args = parser.parse_args()
torch.manual_seed(42)
np.random.seed(42)
logger.info("Starting ultra-fast training pipeline")
if args.train_file is None:
patterns = ["*train*.txt", "*_train.txt"]
files = []
for pattern in patterns:
files.extend(glob.glob(pattern))
files.extend(glob.glob(os.path.join("split_data", pattern)))
files.extend(glob.glob(os.path.join("data", pattern)))
if files:
args.train_file = files[0]
logger.info(f"Found training file: {args.train_file}")
else:
logger.error("No training files found!")
return 1
try:
tokenizer = TechnicalTokenizer()
tokenizer.load(args.tokenizer_dir)
logger.info(f"Tokenizer loaded with vocab size: {tokenizer.get_vocab_size()}")
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
return 1
logger.info("Creating training dataset...")
try:
train_dataset = FastTechnicalTextDataset(
args.train_file, tokenizer, args.max_seq_len, args.max_examples
)
except Exception as e:
logger.error(f"Failed to create training dataset: {e}")
return 1
val_dataset = None
if args.val_file and os.path.exists(args.val_file):
try:
val_dataset = FastTechnicalTextDataset(
args.val_file, tokenizer, args.max_seq_len, max_examples=5000
)
logger.info("Validation dataset created")
except Exception as e:
logger.warning(f"Failed to create validation dataset: {e}")
try:
model = MixtureOfRecursions(
vocab_size=tokenizer.get_vocab_size(),
d_model=args.d_model,
n_layers=args.n_layers,
n_heads=args.n_heads,
max_seq_len=args.max_seq_len - 1,
padding_idx=tokenizer.vocab.get('<pad>', 0)
)
logger.info("Model initialized")
except Exception as e:
logger.error(f"Failed to initialize model: {e}")
return 1
config = {
'learning_rate': args.learning_rate,
'gradient_accumulation_steps': args.gradient_accumulation_steps,
'eval_every': args.eval_every,
'batch_size': args.batch_size,
'epochs': args.epochs
}
try:
trainer = UltraFastTrainer(model, tokenizer, train_dataset, val_dataset, config)
results = trainer.train_ultra_fast(args.epochs, args.batch_size)
with open('ultra_fast_results.json', 'w') as f:
json.dump(results, f, indent=2)
logger.info("Training results saved to ultra_fast_results.json")
return 0
except Exception as e:
logger.error(f"Training failed: {e}")
return 1
if __name__ == "__main__":
exit(run_ultra_fast_training()) |