Create embeddings.py
Browse files- embeddings.py +277 -0
embeddings.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from typing import Optional, Tuple, List
|
| 6 |
+
class PositionalEncoding(nn.Module):
|
| 7 |
+
def __init__(self, d_model: int, max_seq_len: int = 5000, dropout: float = 0.1):
|
| 8 |
+
super(PositionalEncoding, self).__init__()
|
| 9 |
+
self.d_model = d_model
|
| 10 |
+
self.dropout = nn.Dropout(dropout)
|
| 11 |
+
pe = torch.zeros(max_seq_len, d_model)
|
| 12 |
+
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
|
| 13 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
|
| 14 |
+
-(math.log(10000.0) / d_model))
|
| 15 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 16 |
+
if d_model % 2 == 1:
|
| 17 |
+
pe[:, 1::2] = torch.cos(position * div_term[:-1])
|
| 18 |
+
else:
|
| 19 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 20 |
+
self.register_buffer('pe', pe.unsqueeze(0))
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
batch_size, seq_len, d_model = x.size()
|
| 23 |
+
x = x + self.pe[:, :seq_len, :d_model]
|
| 24 |
+
return self.dropout(x)
|
| 25 |
+
class LearnedPositionalEmbedding(nn.Module):
|
| 26 |
+
def __init__(self, max_seq_len: int, d_model: int, dropout: float = 0.1):
|
| 27 |
+
super(LearnedPositionalEmbedding, self).__init__()
|
| 28 |
+
self.max_seq_len = max_seq_len
|
| 29 |
+
self.d_model = d_model
|
| 30 |
+
self.pos_embedding = nn.Embedding(max_seq_len, d_model)
|
| 31 |
+
self.dropout = nn.Dropout(dropout)
|
| 32 |
+
nn.init.normal_(self.pos_embedding.weight, std=0.02)
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
batch_size, seq_len, d_model = x.size()
|
| 35 |
+
if seq_len > self.max_seq_len:
|
| 36 |
+
raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}")
|
| 37 |
+
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
|
| 38 |
+
pos_emb = self.pos_embedding(positions)
|
| 39 |
+
x = x + pos_emb
|
| 40 |
+
return self.dropout(x)
|
| 41 |
+
class RotaryPositionalEmbedding(nn.Module):
|
| 42 |
+
def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = 10000.0):
|
| 43 |
+
super(RotaryPositionalEmbedding, self).__init__()
|
| 44 |
+
self.d_model = d_model
|
| 45 |
+
self.max_seq_len = max_seq_len
|
| 46 |
+
self.base = base
|
| 47 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model))
|
| 48 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 49 |
+
self._seq_len_cached = 0
|
| 50 |
+
self._cos_cached = None
|
| 51 |
+
self._sin_cached = None
|
| 52 |
+
def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
| 53 |
+
if seq_len > self._seq_len_cached:
|
| 54 |
+
self._seq_len_cached = seq_len
|
| 55 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
| 56 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 57 |
+
self._cos_cached = freqs.cos().to(dtype)
|
| 58 |
+
self._sin_cached = freqs.sin().to(dtype)
|
| 59 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 60 |
+
batch_size, seq_len, num_heads, head_dim = q.shape
|
| 61 |
+
self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype)
|
| 62 |
+
cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2]
|
| 63 |
+
sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2]
|
| 64 |
+
cos = cos.view(1, seq_len, 1, -1)
|
| 65 |
+
sin = sin.view(1, seq_len, 1, -1)
|
| 66 |
+
q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
|
| 67 |
+
k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
|
| 68 |
+
q_rot = self._rotate_half(q, cos, sin)
|
| 69 |
+
k_rot = self._rotate_half(k, cos, sin)
|
| 70 |
+
q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
|
| 71 |
+
k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
|
| 72 |
+
return q_rot, k_rot
|
| 73 |
+
def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
| 74 |
+
x1 = x[..., :x.shape[-1] // 2]
|
| 75 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 76 |
+
return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)
|
| 77 |
+
class TechEmbeddingLayer(nn.Module):
|
| 78 |
+
def __init__(self,
|
| 79 |
+
vocab_size: int,
|
| 80 |
+
d_model: int,
|
| 81 |
+
max_seq_len: int = 512,
|
| 82 |
+
dropout: float = 0.1,
|
| 83 |
+
padding_idx: int = 0,
|
| 84 |
+
pos_encoding: str = "learned",
|
| 85 |
+
layer_norm: bool = True):
|
| 86 |
+
super(TechEmbeddingLayer, self).__init__()
|
| 87 |
+
self.d_model = d_model
|
| 88 |
+
self.vocab_size = vocab_size
|
| 89 |
+
self.padding_idx = padding_idx
|
| 90 |
+
self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx)
|
| 91 |
+
self.pos_encoding_type = pos_encoding
|
| 92 |
+
if pos_encoding == "sinusoidal":
|
| 93 |
+
self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout)
|
| 94 |
+
elif pos_encoding == "learned":
|
| 95 |
+
self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout)
|
| 96 |
+
elif pos_encoding == "rope":
|
| 97 |
+
self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len)
|
| 98 |
+
else:
|
| 99 |
+
raise ValueError(f"Unknown positional encoding type: {pos_encoding}")
|
| 100 |
+
self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity()
|
| 101 |
+
self.dropout = nn.Dropout(dropout)
|
| 102 |
+
self._init_weights()
|
| 103 |
+
def _init_weights(self):
|
| 104 |
+
nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02)
|
| 105 |
+
if self.padding_idx is not None:
|
| 106 |
+
nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0)
|
| 107 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 108 |
+
if (input_ids >= self.vocab_size).any():
|
| 109 |
+
raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
|
| 110 |
+
embeddings = self.token_embedding(input_ids)
|
| 111 |
+
if self.pos_encoding_type != "rope":
|
| 112 |
+
embeddings = self.pos_encoding(embeddings)
|
| 113 |
+
embeddings = self.layer_norm(embeddings)
|
| 114 |
+
embeddings = self.dropout(embeddings)
|
| 115 |
+
return embeddings
|
| 116 |
+
def get_positional_encoding(self):
|
| 117 |
+
return self.pos_encoding if self.pos_encoding_type == "rope" else None
|
| 118 |
+
class AdaptiveEmbedding(nn.Module):
|
| 119 |
+
def __init__(self,
|
| 120 |
+
vocab_size: int,
|
| 121 |
+
d_model: int,
|
| 122 |
+
cutoffs: list = [2000, 10000],
|
| 123 |
+
div_val: float = 4.0):
|
| 124 |
+
super(AdaptiveEmbedding, self).__init__()
|
| 125 |
+
self.vocab_size = vocab_size
|
| 126 |
+
self.d_model = d_model
|
| 127 |
+
self.cutoffs = [0] + cutoffs + [vocab_size]
|
| 128 |
+
self.div_val = div_val
|
| 129 |
+
self.embeddings = nn.ModuleList()
|
| 130 |
+
self.projections = nn.ModuleList()
|
| 131 |
+
for i in range(len(self.cutoffs) - 1):
|
| 132 |
+
l_idx = self.cutoffs[i]
|
| 133 |
+
r_idx = self.cutoffs[i + 1]
|
| 134 |
+
d_emb = int(d_model / (div_val ** i))
|
| 135 |
+
emb = nn.Embedding(r_idx - l_idx, d_emb)
|
| 136 |
+
nn.init.normal_(emb.weight, mean=0.0, std=0.02)
|
| 137 |
+
self.embeddings.append(emb)
|
| 138 |
+
if d_emb != d_model:
|
| 139 |
+
proj = nn.Linear(d_emb, d_model, bias=False)
|
| 140 |
+
nn.init.normal_(proj.weight, mean=0.0, std=0.02)
|
| 141 |
+
self.projections.append(proj)
|
| 142 |
+
else:
|
| 143 |
+
self.projections.append(nn.Identity())
|
| 144 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 145 |
+
if (input_ids >= self.vocab_size).any():
|
| 146 |
+
raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
|
| 147 |
+
batch_size, seq_len = input_ids.shape
|
| 148 |
+
embeddings = torch.zeros(batch_size, seq_len, self.d_model,
|
| 149 |
+
device=input_ids.device, dtype=torch.float32)
|
| 150 |
+
for i in range(len(self.cutoffs) - 1):
|
| 151 |
+
l_idx = self.cutoffs[i]
|
| 152 |
+
r_idx = self.cutoffs[i + 1]
|
| 153 |
+
mask = (input_ids >= l_idx) & (input_ids < r_idx)
|
| 154 |
+
if mask.any():
|
| 155 |
+
indices = input_ids[mask] - l_idx
|
| 156 |
+
indices = indices.clamp(max=r_idx - l_idx - 1)
|
| 157 |
+
emb = self.embeddings[i](indices)
|
| 158 |
+
emb = self.projections[i](emb)
|
| 159 |
+
embeddings[mask] = emb
|
| 160 |
+
return embeddings
|
| 161 |
+
def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = 0) -> torch.Tensor:
|
| 162 |
+
return input_ids == padding_idx
|
| 163 |
+
def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor:
|
| 164 |
+
return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool()
|
| 165 |
+
def create_attention_mask(input_ids: torch.Tensor,
|
| 166 |
+
padding_idx: int = 0,
|
| 167 |
+
causal: bool = True) -> torch.Tensor:
|
| 168 |
+
batch_size, seq_len = input_ids.shape
|
| 169 |
+
device = input_ids.device
|
| 170 |
+
|
| 171 |
+
padding_mask = create_padding_mask(input_ids, padding_idx)
|
| 172 |
+
padding_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
|
| 173 |
+
if causal:
|
| 174 |
+
causal_mask = create_causal_mask(seq_len, device)
|
| 175 |
+
causal_mask = causal_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len)
|
| 176 |
+
combined_mask = padding_mask | causal_mask
|
| 177 |
+
else:
|
| 178 |
+
combined_mask = padding_mask
|
| 179 |
+
|
| 180 |
+
return combined_mask
|
| 181 |
+
class EmbeddingAnalyzer:
|
| 182 |
+
def __init__(self, embedding_layer: nn.Module):
|
| 183 |
+
self.embedding_layer = embedding_layer
|
| 184 |
+
def get_similarity_matrix(self, tokens: List[int] = None) -> torch.Tensor:
|
| 185 |
+
if hasattr(self.embedding_layer, 'token_embedding'):
|
| 186 |
+
embeddings = self.embedding_layer.token_embedding.weight
|
| 187 |
+
elif hasattr(self.embedding_layer, 'embeddings'):
|
| 188 |
+
weights = [emb.weight for emb in self.embedding_layer.embeddings]
|
| 189 |
+
embeddings = []
|
| 190 |
+
for i, w in enumerate(weights):
|
| 191 |
+
proj = self.embedding_layer.projections[i]
|
| 192 |
+
embeddings.append(proj(w))
|
| 193 |
+
embeddings = torch.cat(embeddings, dim=0)
|
| 194 |
+
else:
|
| 195 |
+
embeddings = self.embedding_layer.weight
|
| 196 |
+
if tokens is not None and len(tokens) > 0:
|
| 197 |
+
embeddings = embeddings[tokens]
|
| 198 |
+
normalized_embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 199 |
+
return torch.mm(normalized_embeddings, normalized_embeddings.t())
|
| 200 |
+
def find_similar_tokens(self, token_id: int, top_k: int = 10) -> List[Tuple[int, float]]:
|
| 201 |
+
similarity_matrix = self.get_similarity_matrix()
|
| 202 |
+
similarities = similarity_matrix[token_id]
|
| 203 |
+
top_similarities, top_indices = torch.topk(similarities, top_k + 1)
|
| 204 |
+
mask = top_indices != token_id
|
| 205 |
+
top_similarities = top_similarities[mask][:top_k]
|
| 206 |
+
top_indices = top_indices[mask][:top_k]
|
| 207 |
+
return list(zip(top_indices.tolist(), top_similarities.tolist()))
|
| 208 |
+
def analyze_embedding_distribution(self):
|
| 209 |
+
if hasattr(self.embedding_layer, 'token_embedding'):
|
| 210 |
+
weights = self.embedding_layer.token_embedding.weight
|
| 211 |
+
elif hasattr(self.embedding_layer, 'embeddings'):
|
| 212 |
+
weights = torch.cat([emb.weight for emb in self.embedding_layer.embeddings], dim=0)
|
| 213 |
+
else:
|
| 214 |
+
weights = self.embedding_layer.weight
|
| 215 |
+
stats = {
|
| 216 |
+
'mean': weights.mean().item(),
|
| 217 |
+
'std': weights.std().item(),
|
| 218 |
+
'min': weights.min().item(),
|
| 219 |
+
'max': weights.max().item(),
|
| 220 |
+
'norm_mean': weights.norm(dim=1).mean().item(),
|
| 221 |
+
'norm_std': weights.norm(dim=1).std().item()
|
| 222 |
+
}
|
| 223 |
+
return stats
|
| 224 |
+
def test_embeddings():
|
| 225 |
+
print("Testing embedding layers...")
|
| 226 |
+
vocab_size = 1000
|
| 227 |
+
d_model = 512
|
| 228 |
+
max_seq_len = 128
|
| 229 |
+
batch_size = 4
|
| 230 |
+
seq_len = 64
|
| 231 |
+
input_ids = torch.randint(1, vocab_size, (batch_size, seq_len))
|
| 232 |
+
embedding_types = [
|
| 233 |
+
("Learned Position", "learned"),
|
| 234 |
+
("Sinusoidal Position", "sinusoidal"),
|
| 235 |
+
("RoPE", "rope")
|
| 236 |
+
]
|
| 237 |
+
for name, pos_type in embedding_types:
|
| 238 |
+
print(f"\nTesting {name} Embedding:")
|
| 239 |
+
embedding_layer = TechEmbeddingLayer(
|
| 240 |
+
vocab_size=vocab_size,
|
| 241 |
+
d_model=d_model,
|
| 242 |
+
max_seq_len=max_seq_len,
|
| 243 |
+
pos_encoding=pos_type
|
| 244 |
+
)
|
| 245 |
+
embeddings = embedding_layer(input_ids)
|
| 246 |
+
print(f"Input shape: {input_ids.shape}")
|
| 247 |
+
print(f"Output shape: {embeddings.shape}")
|
| 248 |
+
print(f"Expected shape: ({batch_size}, {seq_len}, {d_model})")
|
| 249 |
+
analyzer = EmbeddingAnalyzer(embedding_layer)
|
| 250 |
+
stats = analyzer.analyze_embedding_distribution()
|
| 251 |
+
print(f"Embedding statistics:")
|
| 252 |
+
for key, value in stats.items():
|
| 253 |
+
print(f" {key}: {value:.4f}")
|
| 254 |
+
print(f"\nTesting Adaptive Embeddings:")
|
| 255 |
+
adaptive_emb = AdaptiveEmbedding(
|
| 256 |
+
vocab_size=vocab_size,
|
| 257 |
+
d_model=d_model,
|
| 258 |
+
cutoffs=[200, 500],
|
| 259 |
+
div_val=2.0
|
| 260 |
+
)
|
| 261 |
+
embeddings = adaptive_emb(input_ids)
|
| 262 |
+
print(f"Adaptive embedding output shape: {embeddings.shape}")
|
| 263 |
+
print(f"\nTesting masking functions:")
|
| 264 |
+
input_ids_padded = input_ids.clone()
|
| 265 |
+
input_ids_padded[:, -10:] = 0
|
| 266 |
+
padding_mask = create_padding_mask(input_ids_padded, padding_idx=0)
|
| 267 |
+
causal_mask = create_causal_mask(seq_len, input_ids.device)
|
| 268 |
+
attention_mask = create_attention_mask(input_ids_padded, padding_idx=0, causal=True)
|
| 269 |
+
print(f"Padding mask shape: {padding_mask.shape}")
|
| 270 |
+
print(f"Causal mask shape: {causal_mask.shape}")
|
| 271 |
+
print(f"Attention mask shape: {attention_mask.shape}")
|
| 272 |
+
print(f"Padding positions: {padding_mask.sum().item()}")
|
| 273 |
+
print(f"Causal mask positions: {causal_mask.sum().item()}")
|
| 274 |
+
print(f"Combined mask positions: {attention_mask.sum().item()}")
|
| 275 |
+
print("\nAll embedding tests completed successfully!")
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
test_embeddings()
|