MatchTime / README.md
Homie0609's picture
Update README.md
10ffea5 verified
---
license: cc-by-sa-4.0
datasets:
- Homie0609/MatchTime
language:
- en
tags:
- sports
- soccer
---
## Requirements
- Python >= 3.8 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 2.0.0](https://pytorch.org/) (If use A100)
- transformers >= 4.42.3
- pycocoevalcap >= 1.2
A suitable [conda](https://conda.io/) environment named `matchtime` can be created and activated with:
```
cd MatchTime
conda env create -f environment.yaml
conda activate matchtime
```
## Training
Before training, make sure you have prepared [features](https://pypi.org/project/SoccerNet/) and caption [data]((https://drive.google.com/drive/folders/14tb6lV2nlTxn3VygwAPdmtKm7v0Ss8wG)), and put them into according folders. The structure after collating should be like:
``````
└─ MatchTime
├─ dataset
│ ├─ MatchTime
│ │ ├─ valid
│ │ └─ train
│ │ ├─ england_epl_2014-2015
│ │ ... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley
│ │ ... └─ Labels-caption.json
│ │
│ ├─ SN-Caption
│ └─ SN-Caption-test-align
│ ├─ england_epl_2015-2016
│ ... ├─ 2015-08-16 - 18-00 Manchester City 3 - 0 Chelsea
│ ... └─ Labels-caption_with_gt.json
├─ features
│ ├─ baidu_soccer_embeddings
│ │ ├─ england_epl_2014-2015
... │ ... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley
│ ... ├─ 1_baidu_soccer_embeddings.npy
│ └─ 2_baidu_soccer_embeddings.npy
├─ C3D_PCA512
...
``````
with the format of features is adjusted by
```
python ./features/preprocess.py directory_path_of_feature
```
After preparing the data and features, you can pre-train (or finetune) with the following terminal command (Check hyper-parameters at the bottom of *train.py*):
```
python train.py
```
## Inference
We provide two types of inference:
#### For all test set
You can generate a *.csv* file with the following code to test the ***MatchVoice*** model with the following code (Check hyper-parameters at the bottom of *inference.py*)
```
python inference.py
```
There is a sample of this type of inference in *./inference_result/sample.csv*.
#### For Single Video
We also provide a version for predict the commentary single video (for our checkpoints, use 30s video)
```
python inference_single_video_CLIP.py single_video_path
```
Here we only provide the version of CLIP feature (using VIT/B-32), for crop the CLIP feature, please check [here](https://github.com/openai/CLIP). CLIP features are not the one with best performance but are the most friendly for new new videos.
## Alignment
Before doing alignment, you should download videos from [here](https://www.soccer-net.org/data) (224p is enough) and make it in the following format:
``````
└─ MatchTime
├─ videos_224p
... ├─ england_epl_2014-2015
... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley
... ├─ 1_224.mkv
└─ 2_224p.mkv
``````
### Pre-process (Coarse Align)
We need to use [WhisperX](https://github.com/m-bain/whisperX) and [LLaMA3](https://huggingface.co/docs/transformers/model_doc/llama3)(as agent) to finish coarse alignment with following steps:
*WhisperX ASR:*
```
python ./alignment/soccer_whisperx.py --process_directory video_folder(eg. ./videos_224p/england_epl_2014-2015) --output_directory output_folder(eg. ./ASR_results/england_epl_2014-2015)
```
*Transform to Events:*
```
python ./alignment/soccer_asr2events.py --base_path ASR_results_folder(eg. ./ASR_results/england_epl_2014-2015) --output_dir envent_results_folder(eg. ./event_results/england_epl_2014-2015)
```
*Align from Events:*
```
python ./alignment/soccer_align_from_event.py --event_path envent_results_folder(eg. ./event_results/england_epl_2014-2015) --output_dir output_directory(eg. ./pre-processed/england_epl_2014-2015)
```
More details could be checked in paper.
### Contrastive Learning (Fine-grained Align)
After downloading checkpoints from [here](https://huggingface.co/Homie0609/MatchTime/tree/main). Use the following code to finish alignment with contrastive learning:
```
python ./alignment/do_alignment.py
```
By changing the hyper-parameter ***finding_words***, you can freely align from ASR, enent, or original SN-Caption.
Also, you can directly use alignment model by
```
from alignment.matchtime_model import ContrastiveLearningModel
```
## Evaluation
We provide codes for evaluate the prediction results:
```
# for single csv file
python ./evaluation/scoer_single.py --csv_path ./inference_result/sample.csv
# for many csv files to record scores in a new csv file
python ./evaluation/scoer_group.py
# for gpt score (need OpenAI API Key)
python ./evaluation/scoer_gpt.py ./inference_result/sample.csv
```