|
|
import argparse |
|
|
import datetime |
|
|
import json |
|
|
import numpy as np |
|
|
import os |
|
|
import time |
|
|
import random |
|
|
from pathlib import Path |
|
|
import sys |
|
|
from PIL import Image |
|
|
import torch.nn.functional as F |
|
|
import torch |
|
|
import torch.backends.cudnn as cudnn |
|
|
from torch.utils.data import Dataset |
|
|
import torchvision |
|
|
import wandb |
|
|
import timm |
|
|
from tqdm import tqdm |
|
|
|
|
|
assert "0.4.5" <= timm.__version__ <= "0.4.9" |
|
|
import timm.optim.optim_factory as optim_factory |
|
|
|
|
|
import util.misc as misc |
|
|
from util.misc import NativeScalerWithGradNormCount as NativeScaler |
|
|
import util.lr_sched as lr_sched |
|
|
from util.FSC147 import transform_train, transform_val |
|
|
import models_mae_cross |
|
|
|
|
|
|
|
|
def get_args_parser(): |
|
|
parser = argparse.ArgumentParser('MAE pre-training', add_help=True) |
|
|
parser.add_argument('--batch_size', default=26, type=int, |
|
|
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus)') |
|
|
parser.add_argument('--epochs', default=200, type=int) |
|
|
parser.add_argument('--accum_iter', default=1, type=int, |
|
|
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') |
|
|
|
|
|
|
|
|
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL', |
|
|
help='Name of model to train') |
|
|
parser.add_argument('--mask_ratio', default=0.5, type=float, |
|
|
help='Masking ratio (percentage of removed patches).') |
|
|
parser.add_argument('--norm_pix_loss', action='store_true', |
|
|
help='Use (per-patch) normalized pixels as targets for computing loss') |
|
|
parser.set_defaults(norm_pix_loss=False) |
|
|
|
|
|
|
|
|
parser.add_argument('--weight_decay', type=float, default=0.05, |
|
|
help='weight decay (default: 0.05)') |
|
|
parser.add_argument('--lr', type=float, default=None, metavar='LR', |
|
|
help='learning rate (absolute lr)') |
|
|
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', |
|
|
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') |
|
|
parser.add_argument('--min_lr', type=float, default=0., metavar='LR', |
|
|
help='lower lr bound for cyclic schedulers that hit 0') |
|
|
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N', |
|
|
help='epochs to warmup LR') |
|
|
|
|
|
|
|
|
parser.add_argument('--data_path', default='./data/FSC147/', type=str, |
|
|
help='dataset path') |
|
|
parser.add_argument('--anno_file', default='annotation_FSC147_pos.json', type=str, |
|
|
help='annotation json file for positive samples') |
|
|
parser.add_argument('--anno_file_negative', default='./data/FSC147/annotation_FSC147_neg.json', type=str, |
|
|
help='annotation json file for negative samples') |
|
|
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str, |
|
|
help='data split json file') |
|
|
parser.add_argument('--class_file', default='ImageClasses_FSC147.txt', type=str, |
|
|
help='class json file') |
|
|
parser.add_argument('--im_dir', default='images_384_VarV2', type=str, |
|
|
help='images directory') |
|
|
parser.add_argument('--output_dir', default='./data/out/fim6_dir', |
|
|
help='path where to save, empty for no saving') |
|
|
parser.add_argument('--device', default='cuda', |
|
|
help='device to use for training / testing') |
|
|
parser.add_argument('--seed', default=0, type=int) |
|
|
parser.add_argument('--resume', default='./data/checkpoint.pth', |
|
|
help='resume from checkpoint') |
|
|
parser.add_argument('--do_resume', action='store_true', |
|
|
help='Resume training (e.g. if crashed).') |
|
|
|
|
|
|
|
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', |
|
|
help='start epoch') |
|
|
parser.add_argument('--num_workers', default=10, type=int) |
|
|
parser.add_argument('--pin_mem', action='store_true', |
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') |
|
|
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') |
|
|
parser.set_defaults(pin_mem=True) |
|
|
parser.add_argument('--do_aug', action='store_true', |
|
|
help='Perform data augmentation.') |
|
|
parser.add_argument('--no_do_aug', action='store_false', dest='do_aug') |
|
|
parser.set_defaults(do_aug=True) |
|
|
|
|
|
|
|
|
parser.add_argument('--world_size', default=1, type=int, |
|
|
help='number of distributed processes') |
|
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
|
parser.add_argument('--dist_on_itp', action='store_true') |
|
|
parser.add_argument('--dist_url', default='env://', |
|
|
help='url used to set up distributed training') |
|
|
|
|
|
|
|
|
parser.add_argument("--title", default="count", type=str) |
|
|
parser.add_argument("--wandb", default="240227", type=str) |
|
|
parser.add_argument("--team", default="wsense", type=str) |
|
|
parser.add_argument("--wandb_id", default=None, type=str) |
|
|
|
|
|
return parser |
|
|
|
|
|
|
|
|
os.environ["CUDA_LAUNCH_BLOCKING"] = '0' |
|
|
|
|
|
class TrainData(Dataset): |
|
|
def __init__(self, args, split='train', do_aug=True): |
|
|
with open(args.anno_file) as f: |
|
|
annotations = json.load(f) |
|
|
|
|
|
with open(args.anno_file_negative) as f: |
|
|
neg_annotations = json.load(f) |
|
|
with open(args.data_split_file) as f: |
|
|
data_split = json.load(f) |
|
|
|
|
|
self.img = data_split[split] |
|
|
random.shuffle(self.img) |
|
|
self.split = split |
|
|
self.img_dir = im_dir |
|
|
self.TransformTrain = transform_train(args, do_aug=do_aug) |
|
|
self.TransformVal = transform_val(args) |
|
|
self.annotations = annotations |
|
|
self.neg_annotations = neg_annotations |
|
|
self.im_dir = im_dir |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.img) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
im_id = self.img[idx] |
|
|
anno = self.annotations[im_id] |
|
|
bboxes = anno['box_examples_coordinates'] |
|
|
dots = np.array(anno['points']) |
|
|
|
|
|
|
|
|
neg_anno = self.neg_annotations[im_id] |
|
|
neg_bboxes = neg_anno['box_examples_coordinates'] |
|
|
|
|
|
rects = list() |
|
|
for bbox in bboxes: |
|
|
x1 = bbox[0][0] |
|
|
y1 = bbox[0][1] |
|
|
x2 = bbox[2][0] |
|
|
y2 = bbox[2][1] |
|
|
if x1 < 0: |
|
|
x1 = 0 |
|
|
if x2 < 0: |
|
|
x2 = 0 |
|
|
if y1 < 0: |
|
|
y1 = 0 |
|
|
if y2 < 0: |
|
|
y2 = 0 |
|
|
|
|
|
rects.append([y1, x1, y2, x2]) |
|
|
neg_rects = list() |
|
|
for neg_bbox in neg_bboxes: |
|
|
x1 = neg_bbox[0][0] |
|
|
y1 = neg_bbox[0][1] |
|
|
x2 = neg_bbox[2][0] |
|
|
y2 = neg_bbox[2][1] |
|
|
if x1 < 0: |
|
|
x1 = 0 |
|
|
if x2 < 0: |
|
|
x2 = 0 |
|
|
if y1 < 0: |
|
|
y1 = 0 |
|
|
if y2 < 0: |
|
|
y2 = 0 |
|
|
|
|
|
neg_rects.append([y1, x1, y2, x2]) |
|
|
|
|
|
image = Image.open('{}/{}'.format(self.im_dir, im_id)) |
|
|
if image.mode == "RGBA": |
|
|
image = image.convert("RGB") |
|
|
image.load() |
|
|
m_flag = 0 |
|
|
|
|
|
sample = {'image': image, 'lines_boxes': rects, 'neg_lines_boxes': neg_rects,'dots': dots, 'id': im_id, 'm_flag': m_flag} |
|
|
sample = self.TransformTrain(sample) if self.split == "train" else self.TransformVal(sample) |
|
|
return sample['image'], sample['gt_density'], len(dots), sample['boxes'],sample['neg_boxes'], sample['pos'],sample['m_flag'], im_id |
|
|
|
|
|
def main(args): |
|
|
wandb_run = None |
|
|
try: |
|
|
misc.init_distributed_mode(args) |
|
|
|
|
|
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) |
|
|
print("{}".format(args).replace(', ', ',\n')) |
|
|
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
|
torch.manual_seed(seed) |
|
|
np.random.seed(seed) |
|
|
cudnn.benchmark = True |
|
|
|
|
|
dataset_train = TrainData(args, do_aug=args.do_aug) |
|
|
dataset_val = TrainData(args, split='val') |
|
|
|
|
|
num_tasks = misc.get_world_size() |
|
|
global_rank = misc.get_rank() |
|
|
sampler_train = torch.utils.data.DistributedSampler( |
|
|
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
|
) |
|
|
sampler_val = torch.utils.data.DistributedSampler( |
|
|
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
|
) |
|
|
|
|
|
if global_rank == 0: |
|
|
if args.wandb is not None: |
|
|
wandb_run = wandb.init( |
|
|
config=args, |
|
|
resume="allow", |
|
|
project=args.wandb, |
|
|
name=args.title, |
|
|
|
|
|
tags=["count", "finetuning"], |
|
|
id=args.wandb_id, |
|
|
) |
|
|
|
|
|
data_loader_train = torch.utils.data.DataLoader( |
|
|
dataset_train, sampler=sampler_train, |
|
|
batch_size=args.batch_size, |
|
|
num_workers=args.num_workers, |
|
|
pin_memory=args.pin_mem, |
|
|
drop_last=False, |
|
|
) |
|
|
data_loader_val = torch.utils.data.DataLoader( |
|
|
dataset_val, sampler=sampler_val, |
|
|
batch_size=args.batch_size, |
|
|
num_workers=args.num_workers, |
|
|
pin_memory=args.pin_mem, |
|
|
drop_last=False, |
|
|
) |
|
|
|
|
|
|
|
|
model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss) |
|
|
model.to(device) |
|
|
model_without_ddp = model |
|
|
|
|
|
|
|
|
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() |
|
|
|
|
|
if args.lr is None: |
|
|
args.lr = args.blr * eff_batch_size / 256 |
|
|
|
|
|
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) |
|
|
print("actual lr: %.2e" % args.lr) |
|
|
|
|
|
print("accumulate grad iterations: %d" % args.accum_iter) |
|
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
|
|
if args.distributed: |
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) |
|
|
model_without_ddp = model.module |
|
|
|
|
|
|
|
|
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay) |
|
|
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) |
|
|
print(optimizer) |
|
|
|
|
|
loss_scaler = NativeScaler() |
|
|
|
|
|
min_MAE = 99999 |
|
|
print_freq = 50 |
|
|
save_freq = 50 |
|
|
|
|
|
misc.load_model_FSC_full(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) |
|
|
|
|
|
print(f"Start training for {args.epochs - args.start_epoch} epochs - rank {global_rank}") |
|
|
start_time = time.time() |
|
|
for epoch in range(args.start_epoch, args.epochs): |
|
|
if args.distributed: |
|
|
data_loader_train.sampler.set_epoch(epoch) |
|
|
|
|
|
|
|
|
model.train(True) |
|
|
accum_iter = args.accum_iter |
|
|
|
|
|
|
|
|
train_mae = torch.tensor([0], dtype=torch.float64, device=device) |
|
|
train_mse = torch.tensor([0], dtype=torch.float64, device=device) |
|
|
val_mae = torch.tensor([0], dtype=torch.float64, device=device) |
|
|
val_mse = torch.tensor([0], dtype=torch.float64, device=device) |
|
|
val_nae = torch.tensor([0], dtype=torch.float64, device=device) |
|
|
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
for data_iter_step, (samples, gt_density, _, pos_boxes, neg_boxes, pos, m_flag, im_names) in enumerate( |
|
|
tqdm(data_loader_train, total=len(data_loader_train), desc=f"Train [e. {epoch} - r. {global_rank}]")): |
|
|
idx = data_iter_step + (epoch * len(data_loader_train)) |
|
|
|
|
|
if data_iter_step % accum_iter == 0: |
|
|
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args) |
|
|
|
|
|
samples = samples.to(device, non_blocking=True, dtype=torch.half) |
|
|
gt_density = gt_density.to(device, non_blocking=True, dtype=torch.half) |
|
|
pos_boxes = pos_boxes.to(device, non_blocking=True, dtype=torch.half) |
|
|
neg_boxes = neg_boxes.to(device, non_blocking=True, dtype=torch.half) |
|
|
|
|
|
|
|
|
flag = 0 |
|
|
for i in range(m_flag.shape[0]): |
|
|
flag += m_flag[i].item() |
|
|
if flag == 0: |
|
|
shot_num = random.randint(0, 3) |
|
|
else: |
|
|
shot_num = random.randint(1, 3) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
|
pos_output = model(samples, pos_boxes, shot_num) |
|
|
|
|
|
|
|
|
mask = np.random.binomial(n=1, p=0.8, size=[384, 384]) |
|
|
masks = np.tile(mask, (pos_output.shape[0], 1)) |
|
|
masks = masks.reshape(pos_output.shape[0], 384, 384) |
|
|
masks = torch.from_numpy(masks).to(device) |
|
|
pos_loss = ((pos_output - gt_density) ** 2) |
|
|
pos_loss = (pos_loss * masks / (384 * 384)).sum() / pos_output.shape[0] |
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
|
neg_output = model(samples, neg_boxes, 1) |
|
|
|
|
|
cnt1 = 1-torch.exp(-(torch.abs(pos_output.sum()/60 - gt_density.sum()/60).mean())) |
|
|
if neg_output.shape[0] == 0: |
|
|
cnt2 = 0 |
|
|
else: |
|
|
|
|
|
cnt2 = 1-torch.exp(-(torch.abs((neg_output.sum() / (neg_output.shape[0]*60)) - 1).mean())) |
|
|
cnt = cnt1+cnt2 |
|
|
|
|
|
|
|
|
mask = np.random.binomial(n=1, p=0.8, size=[384, 384]) |
|
|
masks = np.tile(mask, (neg_output.shape[0], 1)) |
|
|
masks = masks.reshape(neg_output.shape[0], 384, 384) |
|
|
masks = torch.from_numpy(masks).to(device) |
|
|
neg_loss = ((neg_output - gt_density) ** 2) |
|
|
if neg_output.shape[0] == 0: |
|
|
neg_loss = 1 |
|
|
else: |
|
|
neg_loss = (neg_loss * masks / (384 * 384)).sum() / neg_output.shape[0] |
|
|
margin = 0.5 |
|
|
contrastive_loss = torch.relu(pos_loss - neg_loss + margin) |
|
|
total_loss = contrastive_loss+pos_loss |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
pred_cnt = (pos_output.view(len(samples), -1)).sum(1) / 60 |
|
|
gt_cnt = (gt_density.view(len(samples), -1)).sum(1) / 60 |
|
|
cnt_err = torch.abs(pred_cnt - gt_cnt).float() |
|
|
batch_mae = cnt_err.double().mean() |
|
|
batch_mse = (cnt_err ** 2).double().mean() |
|
|
|
|
|
train_mae += batch_mae |
|
|
train_mse += batch_mse |
|
|
|
|
|
if not torch.isfinite(total_loss): |
|
|
print("Loss is {}, stopping training".format(total_loss)) |
|
|
sys.exit(1) |
|
|
|
|
|
total_loss /= accum_iter |
|
|
loss_scaler(total_loss, optimizer, parameters=model.parameters(), |
|
|
update_grad=(data_iter_step + 1) % accum_iter == 0) |
|
|
if (data_iter_step + 1) % accum_iter == 0: |
|
|
optimizer.zero_grad() |
|
|
|
|
|
lr = optimizer.param_groups[0]["lr"] |
|
|
loss_value_reduce = misc.all_reduce_mean(total_loss) |
|
|
|
|
|
if (data_iter_step + 1) % (print_freq * accum_iter) == 0 and (data_iter_step + 1) != len(data_loader_train) and data_iter_step != 0: |
|
|
if wandb_run is not None: |
|
|
log = {"train/loss": loss_value_reduce, |
|
|
"train/lr": lr, |
|
|
"train/MAE": batch_mae, |
|
|
"train/RMSE": batch_mse ** 0.5} |
|
|
wandb.log(log, step=idx) |
|
|
|
|
|
|
|
|
for val_samples, val_gt_density, val_n_ppl, val_boxes,_, val_pos, _, val_im_names in \ |
|
|
tqdm(data_loader_val, total=len(data_loader_val), |
|
|
desc=f"Val [e. {epoch} - r. {global_rank}]"): |
|
|
|
|
|
val_samples = val_samples.to(device, non_blocking=True, dtype=torch.half) |
|
|
val_gt_density = val_gt_density.to(device, non_blocking=True, dtype=torch.half) |
|
|
val_boxes = val_boxes.to(device, non_blocking=True, dtype=torch.half) |
|
|
val_n_ppl = val_n_ppl.to(device, non_blocking=True) |
|
|
shot_num = random.randint(0, 3) |
|
|
|
|
|
with torch.no_grad(): |
|
|
with torch.cuda.amp.autocast(): |
|
|
val_output = model(val_samples, val_boxes, shot_num) |
|
|
|
|
|
val_pred_cnt = (val_output.view(len(val_samples), -1)).sum(1) / 60 |
|
|
val_gt_cnt = (val_gt_density.view(len(val_samples), -1)).sum(1) / 60 |
|
|
|
|
|
|
|
|
val_cnt_err = torch.abs(val_pred_cnt - val_gt_cnt).float() |
|
|
|
|
|
val_cnt_err[val_cnt_err == float('inf')] = 0 |
|
|
val_mae += val_cnt_err.double().mean() |
|
|
|
|
|
|
|
|
|
|
|
val_cnt_err[val_cnt_err == float('inf')] = 0 |
|
|
val_mse += (val_cnt_err ** 2).double().mean() |
|
|
|
|
|
|
|
|
_val_nae = val_cnt_err / val_gt_cnt |
|
|
_val_nae[_val_nae == float('inf')] = 0 |
|
|
val_nae += _val_nae.double().mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if wandb_run is not None: |
|
|
train_wandb_densities = [] |
|
|
train_wandb_bboxes = [] |
|
|
val_wandb_densities = [] |
|
|
val_wandb_bboxes = [] |
|
|
black = torch.zeros([384, 384], device=device) |
|
|
|
|
|
for i in range(pos_output.shape[0]): |
|
|
|
|
|
w_d_map = torch.stack([pos_output[i], black, black]) |
|
|
gt_map = torch.stack([gt_density[i], black, black]) |
|
|
box_map = misc.get_box_map(samples[i], pos[i], device) |
|
|
w_gt_density = samples[i] / 2 + gt_map + box_map |
|
|
w_d_map_overlay = samples[i] / 2 + w_d_map |
|
|
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2) |
|
|
w_densities = torch.clamp(w_densities, 0, 1) |
|
|
train_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities), |
|
|
caption=f"[E#{epoch}] {im_names[i]} ({torch.sum(gt_density[i]).item()}, {torch.sum(pos_output[i]).item()})")] |
|
|
|
|
|
|
|
|
w_boxes = torch.cat([pos_boxes[i][x, :, :, :] for x in range(pos_boxes[i].shape[0])], 2) |
|
|
train_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes), |
|
|
caption=f"[E#{epoch}] {im_names[i]}")] |
|
|
|
|
|
for i in range(val_output.shape[0]): |
|
|
|
|
|
w_d_map = torch.stack([val_output[i], black, black]) |
|
|
gt_map = torch.stack([val_gt_density[i], black, black]) |
|
|
box_map = misc.get_box_map(val_samples[i], val_pos[i], device) |
|
|
w_gt_density = val_samples[i] / 2 + gt_map + box_map |
|
|
w_d_map_overlay = val_samples[i] / 2 + w_d_map |
|
|
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2) |
|
|
w_densities = torch.clamp(w_densities, 0, 1) |
|
|
val_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities), |
|
|
caption=f"[E#{epoch}] {val_im_names[i]} ({torch.sum(val_gt_density[i]).item()}, {torch.sum(val_output[i]).item()})")] |
|
|
|
|
|
|
|
|
w_boxes = torch.cat([val_boxes[i][x, :, :, :] for x in range(val_boxes[i].shape[0])], 2) |
|
|
val_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes), |
|
|
caption=f"[E#{epoch}] {val_im_names[i]}")] |
|
|
|
|
|
log = {"train/loss": loss_value_reduce, |
|
|
"train/lr": lr, |
|
|
"train/MAE": batch_mae, |
|
|
"train/RMSE": batch_mse ** 0.5, |
|
|
"val/MAE": val_mae / len(data_loader_val), |
|
|
"val/RMSE": (val_mse / len(data_loader_val)) ** 0.5, |
|
|
"val/NAE": val_nae / len(data_loader_val), |
|
|
"train_densitss": train_wandb_densities, |
|
|
"val_densites": val_wandb_densities, |
|
|
"train_boxes": train_wandb_bboxes, |
|
|
"val_boxes": val_wandb_bboxes} |
|
|
wandb.log(log, step=idx) |
|
|
|
|
|
|
|
|
if args.output_dir and (epoch % save_freq == 0 or epoch + 1 == args.epochs) and epoch != 0: |
|
|
misc.save_model( |
|
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
|
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_{epoch}", upload=epoch % 100 == 0) |
|
|
elif True: |
|
|
misc.save_model( |
|
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
|
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_last", upload=False) |
|
|
if args.output_dir and val_mae / len(data_loader_val) < min_MAE: |
|
|
min_MAE = val_mae / len(data_loader_val) |
|
|
misc.save_model( |
|
|
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, |
|
|
loss_scaler=loss_scaler, epoch=epoch, suffix="finetuning_minMAE") |
|
|
|
|
|
print(f'[Train Epoch #{epoch}] - MAE: {train_mae.item() / len(data_loader_train):5.2f}, RMSE: {(train_mse.item() / len(data_loader_train)) ** 0.5:5.2f}', flush=True) |
|
|
print(f'[Val Epoch #{epoch}] - MAE: {val_mae.item() / len(data_loader_val):5.2f}, RMSE: {(val_mse.item() / len(data_loader_val)) ** 0.5:5.2f}, NAE: {val_nae.item() / len(data_loader_val):5.2f}', flush=True) |
|
|
|
|
|
total_time = time.time() - start_time |
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
finally: |
|
|
if wandb_run is not None: |
|
|
wandb.run.finish() |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
args = get_args_parser() |
|
|
args = args.parse_args() |
|
|
|
|
|
data_path = Path(args.data_path) |
|
|
anno_file = data_path / args.anno_file |
|
|
data_split_file = data_path / args.data_split_file |
|
|
im_dir = data_path / args.im_dir |
|
|
|
|
|
if args.do_aug: |
|
|
class_file = data_path / args.class_file |
|
|
else: |
|
|
class_file = None |
|
|
|
|
|
args.anno_file = anno_file |
|
|
args.data_split_file = data_split_file |
|
|
args.im_dir = im_dir |
|
|
args.class_file = class_file |
|
|
|
|
|
if args.output_dir: |
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
main(args) |
|
|
|