VA-Count / FSC_tain.py
HopooLinZ's picture
Upload 35 files
dc066a6 verified
import argparse
import datetime
import json
import numpy as np
import os
import time
import random
from pathlib import Path
import sys
from PIL import Image
import torch.nn.functional as F
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset
import torchvision
import wandb
import timm
from tqdm import tqdm
assert "0.4.5" <= timm.__version__ <= "0.4.9" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import transform_train, transform_val
import models_mae_cross
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=True)
parser.add_argument('--batch_size', default=26, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus)')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_pos.json', type=str,
help='annotation json file for positive samples')
parser.add_argument('--anno_file_negative', default='./data/FSC147/annotation_FSC147_neg.json', type=str,
help='annotation json file for negative samples')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--class_file', default='ImageClasses_FSC147.txt', type=str,
help='class json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--output_dir', default='./data/out/fim6_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./data/checkpoint.pth',
help='resume from checkpoint')
parser.add_argument('--do_resume', action='store_true',
help='Resume training (e.g. if crashed).')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--do_aug', action='store_true',
help='Perform data augmentation.')
parser.add_argument('--no_do_aug', action='store_false', dest='do_aug')
parser.set_defaults(do_aug=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument("--title", default="count", type=str)
parser.add_argument("--wandb", default="240227", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '0'
class TrainData(Dataset):
def __init__(self, args, split='train', do_aug=True):
with open(args.anno_file) as f:
annotations = json.load(f)
# Load negative annotations
with open(args.anno_file_negative) as f:
neg_annotations = json.load(f)
with open(args.data_split_file) as f:
data_split = json.load(f)
self.img = data_split[split]
random.shuffle(self.img)
self.split = split
self.img_dir = im_dir
self.TransformTrain = transform_train(args, do_aug=do_aug)
self.TransformVal = transform_val(args)
self.annotations = annotations
self.neg_annotations = neg_annotations
self.im_dir = im_dir
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = self.annotations[im_id]
bboxes = anno['box_examples_coordinates']
dots = np.array(anno['points'])
# 加载负样本的框
neg_anno = self.neg_annotations[im_id] # 假设每个图像ID在负样本注释中都有对应的条目
neg_bboxes = neg_anno['box_examples_coordinates']
rects = list()
for bbox in bboxes:
x1 = bbox[0][0]
y1 = bbox[0][1]
x2 = bbox[2][0]
y2 = bbox[2][1]
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
rects.append([y1, x1, y2, x2])
neg_rects = list()
for neg_bbox in neg_bboxes:
x1 = neg_bbox[0][0]
y1 = neg_bbox[0][1]
x2 = neg_bbox[2][0]
y2 = neg_bbox[2][1]
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
neg_rects.append([y1, x1, y2, x2])
image = Image.open('{}/{}'.format(self.im_dir, im_id))
if image.mode == "RGBA":
image = image.convert("RGB")
image.load()
m_flag = 0
sample = {'image': image, 'lines_boxes': rects, 'neg_lines_boxes': neg_rects,'dots': dots, 'id': im_id, 'm_flag': m_flag}
sample = self.TransformTrain(sample) if self.split == "train" else self.TransformVal(sample)
return sample['image'], sample['gt_density'], len(dots), sample['boxes'],sample['neg_boxes'], sample['pos'],sample['m_flag'], im_id
def main(args):
wandb_run = None
try:
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# if torch.cuda.is_available():
# device = torch.device("cuda:5")
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = TrainData(args, do_aug=args.do_aug)
dataset_val = TrainData(args, split='val')
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if global_rank == 0:
if args.wandb is not None:
wandb_run = wandb.init(
config=args,
resume="allow",
project=args.wandb,
name=args.title,
# entity=args.team,
tags=["count", "finetuning"],
id=args.wandb_id,
)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# define the model
model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
# print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
min_MAE = 99999
print_freq = 50
save_freq = 50
misc.load_model_FSC_full(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs - args.start_epoch} epochs - rank {global_rank}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# train one epoch
model.train(True)
accum_iter = args.accum_iter
# some parameters in training
train_mae = torch.tensor([0], dtype=torch.float64, device=device)
train_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_mae = torch.tensor([0], dtype=torch.float64, device=device)
val_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_nae = torch.tensor([0], dtype=torch.float64, device=device)
optimizer.zero_grad()
for data_iter_step, (samples, gt_density, _, pos_boxes, neg_boxes, pos, m_flag, im_names) in enumerate(
tqdm(data_loader_train, total=len(data_loader_train), desc=f"Train [e. {epoch} - r. {global_rank}]")):
idx = data_iter_step + (epoch * len(data_loader_train))
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True, dtype=torch.half)
gt_density = gt_density.to(device, non_blocking=True, dtype=torch.half)
pos_boxes = pos_boxes.to(device, non_blocking=True, dtype=torch.half)
neg_boxes = neg_boxes.to(device, non_blocking=True, dtype=torch.half)
# 如果至少有一个图像在批处理中使用了Type 2 Mosaic,则禁止0-shot。
flag = 0
for i in range(m_flag.shape[0]):
flag += m_flag[i].item()
if flag == 0:
shot_num = random.randint(0, 3)
else:
shot_num = random.randint(1, 3)
with torch.cuda.amp.autocast():
pos_output = model(samples, pos_boxes, shot_num) # 正样本输出
# 计算正样本损失
mask = np.random.binomial(n=1, p=0.8, size=[384, 384])
masks = np.tile(mask, (pos_output.shape[0], 1))
masks = masks.reshape(pos_output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
pos_loss = ((pos_output - gt_density) ** 2)
pos_loss = (pos_loss * masks / (384 * 384)).sum() / pos_output.shape[0]
# 负样本输出
with torch.cuda.amp.autocast():
neg_output = model(samples, neg_boxes, 1) # 负样本输出
cnt1 = 1-torch.exp(-(torch.abs(pos_output.sum()/60 - gt_density.sum()/60).mean()))
if neg_output.shape[0] == 0:
cnt2 = 0
else:
# cnt2 = torch.log(torch.abs((neg_output.sum() / neg_output.shape[0]) - 1).mean()+1)
cnt2 = 1-torch.exp(-(torch.abs((neg_output.sum() / (neg_output.shape[0]*60)) - 1).mean()))
cnt = cnt1+cnt2
# 计算正样本损失
mask = np.random.binomial(n=1, p=0.8, size=[384, 384])
masks = np.tile(mask, (neg_output.shape[0], 1))
masks = masks.reshape(neg_output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
neg_loss = ((neg_output - gt_density) ** 2)
if neg_output.shape[0] == 0:
neg_loss = 1
else:
neg_loss = (neg_loss * masks / (384 * 384)).sum() / neg_output.shape[0]
margin = 0.5
contrastive_loss = torch.relu(pos_loss - neg_loss + margin)
total_loss = contrastive_loss+pos_loss
# 更新 MAE 和 RMSE
with torch.no_grad():
pred_cnt = (pos_output.view(len(samples), -1)).sum(1) / 60
gt_cnt = (gt_density.view(len(samples), -1)).sum(1) / 60
cnt_err = torch.abs(pred_cnt - gt_cnt).float()
batch_mae = cnt_err.double().mean()
batch_mse = (cnt_err ** 2).double().mean()
train_mae += batch_mae
train_mse += batch_mse
if not torch.isfinite(total_loss):
print("Loss is {}, stopping training".format(total_loss))
sys.exit(1)
total_loss /= accum_iter
loss_scaler(total_loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
lr = optimizer.param_groups[0]["lr"]
loss_value_reduce = misc.all_reduce_mean(total_loss)
if (data_iter_step + 1) % (print_freq * accum_iter) == 0 and (data_iter_step + 1) != len(data_loader_train) and data_iter_step != 0:
if wandb_run is not None:
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5}
wandb.log(log, step=idx)
# evaluation on Validation split
for val_samples, val_gt_density, val_n_ppl, val_boxes,_, val_pos, _, val_im_names in \
tqdm(data_loader_val, total=len(data_loader_val),
desc=f"Val [e. {epoch} - r. {global_rank}]"):
val_samples = val_samples.to(device, non_blocking=True, dtype=torch.half)
val_gt_density = val_gt_density.to(device, non_blocking=True, dtype=torch.half)
val_boxes = val_boxes.to(device, non_blocking=True, dtype=torch.half)
val_n_ppl = val_n_ppl.to(device, non_blocking=True)
shot_num = random.randint(0, 3)
with torch.no_grad():
with torch.cuda.amp.autocast():
val_output = model(val_samples, val_boxes, shot_num)
val_pred_cnt = (val_output.view(len(val_samples), -1)).sum(1) / 60
val_gt_cnt = (val_gt_density.view(len(val_samples), -1)).sum(1) / 60
# print('val_pred_cnt',val_pred_cnt)
# print('val_gt_cnt',val_gt_cnt)
val_cnt_err = torch.abs(val_pred_cnt - val_gt_cnt).float()
# print('val_cnt_err',val_cnt_err.mean())
val_cnt_err[val_cnt_err == float('inf')] = 0
val_mae += val_cnt_err.double().mean()
# val_mae += val_cnt_err
# print('val_mae',val_mae.mean())
val_cnt_err[val_cnt_err == float('inf')] = 0
val_mse += (val_cnt_err ** 2).double().mean()
# val_mse += (val_cnt_err ** 2)
_val_nae = val_cnt_err / val_gt_cnt
_val_nae[_val_nae == float('inf')] = 0
val_nae += _val_nae.double().mean()
# val_mae = val_mae/len(data_loader_val)
# val_mse = val_mse/len(data_loader_val)
# print('val_mae',val_mae)
# print('val_mse',val_mse)
# Output visualisation information to W&B
if wandb_run is not None:
train_wandb_densities = []
train_wandb_bboxes = []
val_wandb_densities = []
val_wandb_bboxes = []
black = torch.zeros([384, 384], device=device)
for i in range(pos_output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([pos_output[i], black, black])
gt_map = torch.stack([gt_density[i], black, black])
box_map = misc.get_box_map(samples[i], pos[i], device)
w_gt_density = samples[i] / 2 + gt_map + box_map
w_d_map_overlay = samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
train_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {im_names[i]} ({torch.sum(gt_density[i]).item()}, {torch.sum(pos_output[i]).item()})")]
# exemplars
w_boxes = torch.cat([pos_boxes[i][x, :, :, :] for x in range(pos_boxes[i].shape[0])], 2)
train_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {im_names[i]}")]
for i in range(val_output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([val_output[i], black, black])
gt_map = torch.stack([val_gt_density[i], black, black])
box_map = misc.get_box_map(val_samples[i], val_pos[i], device)
w_gt_density = val_samples[i] / 2 + gt_map + box_map
w_d_map_overlay = val_samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
val_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {val_im_names[i]} ({torch.sum(val_gt_density[i]).item()}, {torch.sum(val_output[i]).item()})")]
# exemplars
w_boxes = torch.cat([val_boxes[i][x, :, :, :] for x in range(val_boxes[i].shape[0])], 2)
val_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {val_im_names[i]}")]
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5,
"val/MAE": val_mae / len(data_loader_val),
"val/RMSE": (val_mse / len(data_loader_val)) ** 0.5,
"val/NAE": val_nae / len(data_loader_val),
"train_densitss": train_wandb_densities,
"val_densites": val_wandb_densities,
"train_boxes": train_wandb_bboxes,
"val_boxes": val_wandb_bboxes}
wandb.log(log, step=idx)
# save train status and model
if args.output_dir and (epoch % save_freq == 0 or epoch + 1 == args.epochs) and epoch != 0:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_{epoch}", upload=epoch % 100 == 0)
elif True:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_last", upload=False)
if args.output_dir and val_mae / len(data_loader_val) < min_MAE:
min_MAE = val_mae / len(data_loader_val)
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix="finetuning_minMAE")
print(f'[Train Epoch #{epoch}] - MAE: {train_mae.item() / len(data_loader_train):5.2f}, RMSE: {(train_mse.item() / len(data_loader_train)) ** 0.5:5.2f}', flush=True)
print(f'[Val Epoch #{epoch}] - MAE: {val_mae.item() / len(data_loader_val):5.2f}, RMSE: {(val_mse.item() / len(data_loader_val)) ** 0.5:5.2f}, NAE: {val_nae.item() / len(data_loader_val):5.2f}', flush=True)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
finally:
if wandb_run is not None:
wandb.run.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
data_path = Path(args.data_path)
anno_file = data_path / args.anno_file
data_split_file = data_path / args.data_split_file
im_dir = data_path / args.im_dir
if args.do_aug:
class_file = data_path / args.class_file
else:
class_file = None
args.anno_file = anno_file
args.data_split_file = data_split_file
args.im_dir = im_dir
args.class_file = class_file
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)