|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import builtins |
|
|
import datetime |
|
|
import os |
|
|
import time |
|
|
import json |
|
|
from collections import defaultdict, deque |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
import pandas as pd |
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import wandb |
|
|
|
|
|
from torch import inf |
|
|
import matplotlib.pyplot as plt |
|
|
from torchvision import transforms |
|
|
import cv2 |
|
|
from tqdm import tqdm |
|
|
from typing import Union, List |
|
|
|
|
|
class SmoothedValue(object): |
|
|
"""Track a series of values and provide access to smoothed values over a |
|
|
window or the global series average. |
|
|
""" |
|
|
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
|
if fmt is None: |
|
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
|
self.deque = deque(maxlen=window_size) |
|
|
self.total = 0.0 |
|
|
self.count = 0 |
|
|
self.fmt = fmt |
|
|
|
|
|
def update(self, value, n=1): |
|
|
self.deque.append(value) |
|
|
self.count += n |
|
|
self.total += value * n |
|
|
|
|
|
def synchronize_between_processes(self): |
|
|
""" |
|
|
Warning: does not synchronize the deque! |
|
|
""" |
|
|
if not is_dist_avail_and_initialized(): |
|
|
return |
|
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
|
dist.barrier() |
|
|
dist.all_reduce(t) |
|
|
t = t.tolist() |
|
|
self.count = int(t[0]) |
|
|
self.total = t[1] |
|
|
|
|
|
@property |
|
|
def median(self): |
|
|
d = torch.tensor(list(self.deque)) |
|
|
return d.median().item() |
|
|
|
|
|
@property |
|
|
def avg(self): |
|
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
|
return d.mean().item() |
|
|
|
|
|
@property |
|
|
def global_avg(self): |
|
|
if self.count == 0: |
|
|
|
|
|
return 0 |
|
|
else: |
|
|
return self.total / self.count |
|
|
|
|
|
|
|
|
@property |
|
|
def max(self): |
|
|
return max(self.deque) |
|
|
|
|
|
@property |
|
|
def value(self): |
|
|
return self.deque[-1] |
|
|
|
|
|
def __str__(self): |
|
|
return self.fmt.format( |
|
|
median=self.median, |
|
|
avg=self.avg, |
|
|
global_avg=self.global_avg, |
|
|
max=self.max, |
|
|
value=self.value) |
|
|
|
|
|
|
|
|
class MetricLogger(object): |
|
|
def __init__(self, delimiter="\t"): |
|
|
self.meters = defaultdict(SmoothedValue) |
|
|
self.delimiter = delimiter |
|
|
|
|
|
def update(self, **kwargs): |
|
|
for k, v in kwargs.items(): |
|
|
if v is None: |
|
|
continue |
|
|
if isinstance(v, torch.Tensor): |
|
|
v = v.item() |
|
|
assert isinstance(v, (float, int)) |
|
|
self.meters[k].update(v) |
|
|
|
|
|
def __getattr__(self, attr): |
|
|
if attr in self.meters: |
|
|
return self.meters[attr] |
|
|
if attr in self.__dict__: |
|
|
return self.__dict__[attr] |
|
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
|
type(self).__name__, attr)) |
|
|
|
|
|
def __str__(self): |
|
|
loss_str = [] |
|
|
for name, meter in self.meters.items(): |
|
|
loss_str.append( |
|
|
"{}: {}".format(name, str(meter)) |
|
|
) |
|
|
return self.delimiter.join(loss_str) |
|
|
|
|
|
def synchronize_between_processes(self): |
|
|
for meter in self.meters.values(): |
|
|
meter.synchronize_between_processes() |
|
|
|
|
|
def add_meter(self, name, meter): |
|
|
self.meters[name] = meter |
|
|
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
|
i = 0 |
|
|
if not header: |
|
|
header = '' |
|
|
start_time = time.time() |
|
|
end = time.time() |
|
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
|
log_msg = [ |
|
|
header, |
|
|
'[{0' + space_fmt + '}/{1}]', |
|
|
'eta: {eta}', |
|
|
'{meters}', |
|
|
'time: {time}', |
|
|
'data: {data}' |
|
|
] |
|
|
if torch.cuda.is_available(): |
|
|
log_msg.append('max mem: {memory:.0f}') |
|
|
log_msg = self.delimiter.join(log_msg) |
|
|
MB = 1024.0 * 1024.0 |
|
|
for obj in iterable: |
|
|
data_time.update(time.time() - end) |
|
|
yield obj |
|
|
iter_time.update(time.time() - end) |
|
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
|
if torch.cuda.is_available(): |
|
|
print(log_msg.format( |
|
|
i, len(iterable), eta=eta_string, |
|
|
meters=str(self), |
|
|
time=str(iter_time), data=str(data_time), |
|
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
|
else: |
|
|
print(log_msg.format( |
|
|
i, len(iterable), eta=eta_string, |
|
|
meters=str(self), |
|
|
time=str(iter_time), data=str(data_time))) |
|
|
i += 1 |
|
|
end = time.time() |
|
|
total_time = time.time() - start_time |
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
|
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
|
|
|
def setup_for_distributed(is_master): |
|
|
""" |
|
|
This function disables printing when not in master process |
|
|
""" |
|
|
builtin_print = builtins.print |
|
|
|
|
|
def print(*args, **kwargs): |
|
|
force = kwargs.pop('force', False) |
|
|
force = force or (get_world_size() > 8) |
|
|
if is_master or force: |
|
|
now = datetime.datetime.now().time() |
|
|
builtin_print('[{}] '.format(now), end='') |
|
|
builtin_print(*args, **kwargs) |
|
|
|
|
|
builtins.print = print |
|
|
|
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
|
if not dist.is_available(): |
|
|
return False |
|
|
if not dist.is_initialized(): |
|
|
return False |
|
|
return True |
|
|
|
|
|
|
|
|
def get_world_size(): |
|
|
if not is_dist_avail_and_initialized(): |
|
|
return 1 |
|
|
return dist.get_world_size() |
|
|
|
|
|
|
|
|
def get_rank(): |
|
|
if not is_dist_avail_and_initialized(): |
|
|
return 0 |
|
|
return dist.get_rank() |
|
|
|
|
|
|
|
|
def is_main_process(): |
|
|
return get_rank() == 0 |
|
|
|
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
|
if is_main_process(): |
|
|
torch.save(*args, **kwargs) |
|
|
|
|
|
|
|
|
def init_distributed_mode(args): |
|
|
if args.dist_on_itp: |
|
|
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
|
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) |
|
|
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) |
|
|
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) |
|
|
os.environ['LOCAL_RANK'] = str(args.gpu) |
|
|
os.environ['RANK'] = str(args.rank) |
|
|
os.environ['WORLD_SIZE'] = str(args.world_size) |
|
|
|
|
|
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
|
args.rank = int(os.environ["RANK"]) |
|
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
|
elif 'SLURM_PROCID' in os.environ: |
|
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
|
args.gpu = args.rank % torch.cuda.device_count() |
|
|
else: |
|
|
print('Not using distributed mode') |
|
|
setup_for_distributed(is_master=True) |
|
|
args.distributed = False |
|
|
return |
|
|
|
|
|
args.distributed = True |
|
|
|
|
|
torch.cuda.set_device(args.gpu) |
|
|
args.dist_backend = 'nccl' |
|
|
print('| distributed init (rank {}): {}, gpu {}'.format( |
|
|
args.rank, args.dist_url, args.gpu), flush=True) |
|
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
|
world_size=args.world_size, rank=args.rank) |
|
|
torch.distributed.barrier() |
|
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
|
state_dict_key = "amp_scaler" |
|
|
|
|
|
def __init__(self): |
|
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): |
|
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
|
if update_grad: |
|
|
if clip_grad is not None: |
|
|
assert parameters is not None |
|
|
self._scaler.unscale_(optimizer) |
|
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
|
else: |
|
|
self._scaler.unscale_(optimizer) |
|
|
norm = get_grad_norm_(parameters) |
|
|
self._scaler.step(optimizer) |
|
|
self._scaler.update() |
|
|
else: |
|
|
norm = None |
|
|
return norm |
|
|
|
|
|
def state_dict(self): |
|
|
return self._scaler.state_dict() |
|
|
|
|
|
def load_state_dict(self, state_dict): |
|
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
|
if isinstance(parameters, torch.Tensor): |
|
|
parameters = [parameters] |
|
|
parameters = [p for p in parameters if p.grad is not None] |
|
|
norm_type = float(norm_type) |
|
|
if len(parameters) == 0: |
|
|
return torch.tensor(0.) |
|
|
device = parameters[0].grad.device |
|
|
if norm_type == inf: |
|
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
|
else: |
|
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
|
|
return total_norm |
|
|
|
|
|
|
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, suffix="", upload=True): |
|
|
if suffix: |
|
|
suffix = f"__{suffix}" |
|
|
output_dir = Path(args.output_dir) |
|
|
ckpt_name = f"checkpoint{suffix}.pth" |
|
|
if loss_scaler is not None: |
|
|
checkpoint_paths = [output_dir / ckpt_name] |
|
|
for checkpoint_path in checkpoint_paths: |
|
|
to_save = { |
|
|
'model': model_without_ddp.state_dict(), |
|
|
'optimizer': optimizer.state_dict(), |
|
|
'epoch': epoch, |
|
|
'scaler': loss_scaler.state_dict(), |
|
|
'args': args, |
|
|
} |
|
|
save_on_master(to_save, checkpoint_path) |
|
|
if upload and is_main_process(): |
|
|
log_wandb_model(f"checkpoint{suffix}", checkpoint_path, epoch) |
|
|
print("checkpoint sent to W&B (if)") |
|
|
else: |
|
|
client_state = {'epoch': epoch} |
|
|
model.save_checkpoint(save_dir=args.output_dir, tag=ckpt_name, client_state=client_state) |
|
|
if upload and is_main_process(): |
|
|
log_wandb_model(f"checkpoint{suffix}", output_dir / ckpt_name, epoch) |
|
|
print("checkpoint sent to W&B (else)") |
|
|
|
|
|
|
|
|
def log_wandb_model(title, path, epoch): |
|
|
artifact = wandb.Artifact(title, type="model") |
|
|
artifact.add_file(path) |
|
|
artifact.metadata["epoch"] = epoch |
|
|
wandb.log_artifact(artifact_or_path=artifact, name=title) |
|
|
|
|
|
|
|
|
def load_model(args, model_without_ddp, optimizer, loss_scaler): |
|
|
if args.resume: |
|
|
if args.resume.startswith('https'): |
|
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
|
args.resume, map_location='cpu', check_hash=True) |
|
|
else: |
|
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
|
|
|
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: |
|
|
print(f"Removing key pos_embed from pretrained checkpoint") |
|
|
del checkpoint['model']['pos_embed'] |
|
|
|
|
|
if 'decoder_pos_embed' in checkpoint['model'] and checkpoint['model']['decoder_pos_embed'].shape != model_without_ddp.state_dict()['decoder_pos_embed'].shape: |
|
|
print(f"Removing key decoder_pos_embed from pretrained checkpoint") |
|
|
del checkpoint['model']['decoder_pos_embed'] |
|
|
|
|
|
model_without_ddp.load_state_dict(checkpoint['model'], strict=False) |
|
|
print("Resume checkpoint %s" % args.resume) |
|
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): |
|
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
|
if 'scaler' in checkpoint: |
|
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
|
print("With optim & sched!") |
|
|
|
|
|
def load_model_FSC(args, model_without_ddp): |
|
|
if args.resume: |
|
|
if args.resume.startswith('https'): |
|
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
|
args.resume, map_location='cpu', check_hash=True) |
|
|
else: |
|
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
|
|
|
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: |
|
|
print(f"Removing key pos_embed from pretrained checkpoint") |
|
|
del checkpoint['model']['pos_embed'] |
|
|
|
|
|
model_without_ddp.load_state_dict(checkpoint['model'], strict=False) |
|
|
print(f"Resume checkpoint {args.resume} ({checkpoint['epoch']})") |
|
|
|
|
|
def load_model_FSC1(args, model_without_ddp): |
|
|
if args.resume: |
|
|
if args.resume.startswith('https'): |
|
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
|
args.resume, map_location='cpu', check_hash=True) |
|
|
else: |
|
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
|
|
|
|
|
|
checkpoint1 = torch.load('./output_abnopre_dir/checkpoint-6657.pth', map_location='cpu') |
|
|
|
|
|
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: |
|
|
print(f"Removing key pos_embed from pretrained checkpoint") |
|
|
del checkpoint['model']['pos_embed'] |
|
|
|
|
|
del checkpoint1['cls_token'],checkpoint1['pos_embed'] |
|
|
|
|
|
model_without_ddp.load_state_dict(checkpoint['model'], strict=False) |
|
|
model_without_ddp.load_state_dict(checkpoint1, strict=False) |
|
|
print("Resume checkpoint %s" % args.resume) |
|
|
|
|
|
|
|
|
def load_model_FSC_full(args, model_without_ddp, optimizer, loss_scaler): |
|
|
if args.resume: |
|
|
if args.resume.startswith('https'): |
|
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
|
args.resume, map_location='cpu', check_hash=True) |
|
|
else: |
|
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
|
|
|
|
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != \ |
|
|
model_without_ddp.state_dict()['pos_embed'].shape: |
|
|
print(f"Removing key pos_embed from pretrained checkpoint") |
|
|
del checkpoint['model']['pos_embed'] |
|
|
|
|
|
model_without_ddp.load_state_dict(checkpoint['model'], strict=False) |
|
|
print("Resume checkpoint %s" % args.resume) |
|
|
|
|
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint and args.do_resume: |
|
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
|
if 'scaler' in checkpoint: |
|
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
|
print("With optim & scheduler!") |
|
|
|
|
|
|
|
|
def all_reduce_mean(x): |
|
|
world_size = get_world_size() |
|
|
if world_size > 1: |
|
|
x_reduce = torch.tensor(x).cuda() |
|
|
dist.all_reduce(x_reduce) |
|
|
x_reduce /= world_size |
|
|
return x_reduce.item() |
|
|
else: |
|
|
return x |
|
|
|
|
|
|
|
|
def plot_counts(res_csv: Union[str, List[str]], output_dir: str, suffix: str = "", smooth: bool = False): |
|
|
if suffix: |
|
|
suffix = f"_{suffix}" |
|
|
if smooth: |
|
|
suffix = f"_smooth{suffix}" |
|
|
if type(res_csv) == str: |
|
|
res_csv = [res_csv] |
|
|
|
|
|
plt.figure(figsize=(15, 5)) |
|
|
|
|
|
for res in res_csv: |
|
|
name = Path(res).parent.name |
|
|
df = pd.read_csv(res) |
|
|
print(df) |
|
|
|
|
|
df.sort_values(by="name", inplace=True) |
|
|
df.reset_index(drop=True, inplace=True) |
|
|
df.index += 1 |
|
|
print(df) |
|
|
|
|
|
if smooth: |
|
|
time_arr = df.index[5:-5] |
|
|
smooth_pred_mean = df['prediction'].iloc[5:-5].rolling(25).mean() |
|
|
smooth_pred_std = df['prediction'].iloc[5:-5].rolling(25).std() |
|
|
plt.plot(time_arr, smooth_pred_mean, label=name) |
|
|
plt.fill_between(time_arr, smooth_pred_mean + smooth_pred_std, smooth_pred_mean - smooth_pred_std, alpha=.2) |
|
|
plt.xlabel('Frame') |
|
|
plt.ylabel('Count') |
|
|
else: |
|
|
plt.plot(df.index, df['prediction'], label=name) |
|
|
|
|
|
plt.legend() |
|
|
plt.savefig(os.path.join(output_dir, f'counts{suffix}.png'), dpi=300) |
|
|
|
|
|
|
|
|
def write_zeroshot_annotations(p: Path): |
|
|
with open(p / 'annotations.json', 'a') as split: |
|
|
split.write('{\n') |
|
|
for img in p.iterdir(): |
|
|
if img.is_file(): |
|
|
split.write(f' "{img.name}": {{\n' \ |
|
|
' "H": 960,\n' \ |
|
|
' "W": 1280,\n' \ |
|
|
' "box_examples_coordinates": [],\n' \ |
|
|
' "points": []\n' \ |
|
|
' },\n') |
|
|
split.write("}") |
|
|
|
|
|
with open(p / 'split.json', 'a') as split: |
|
|
split.write('{\n "test":\n [\n') |
|
|
for img in p.iterdir(): |
|
|
if img.is_file(): |
|
|
split.write(f' "{img.name}",\n') |
|
|
split.write(" ]\n}") |
|
|
|
|
|
|
|
|
def make_grid(imgs, h, w): |
|
|
assert len(imgs) == 9 |
|
|
rows = [] |
|
|
for i in range(0, 9, 3): |
|
|
row = torch.cat((imgs[i], imgs[i + 1], imgs[i + 2]), -1) |
|
|
rows += [row] |
|
|
grid = torch.cat((rows[0], rows[1], rows[2]), 0) |
|
|
grid = transforms.Resize((h, w))(grid.unsqueeze(0)) |
|
|
return grid.squeeze(0) |
|
|
|
|
|
|
|
|
def min_max(t): |
|
|
t_shape = t.shape |
|
|
t = t.view(t_shape[0], -1) |
|
|
t -= t.min(1, keepdim=True)[0] |
|
|
t /= t.max(1, keepdim=True)[0] |
|
|
t = t.view(*t_shape) |
|
|
return t |
|
|
|
|
|
|
|
|
def min_max_np(v, new_min=0, new_max=1): |
|
|
v_min, v_max = v.min(), v.max() |
|
|
return (v - v_min) / (v_max - v_min) * (new_max - new_min) + new_min |
|
|
|
|
|
|
|
|
def get_box_map(sample, pos, device, external=False): |
|
|
box_map = torch.zeros([sample.shape[1], sample.shape[2]], device=device) |
|
|
if external is False: |
|
|
for rect in pos: |
|
|
for i in range(rect[2] - rect[0]): |
|
|
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[1], sample.shape[2] - 1)] = 10 |
|
|
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[3], sample.shape[2] - 1)] = 10 |
|
|
for i in range(rect[3] - rect[1]): |
|
|
box_map[min(rect[0], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10 |
|
|
box_map[min(rect[2], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10 |
|
|
box_map = box_map.unsqueeze(0).repeat(3, 1, 1) |
|
|
return box_map |
|
|
|
|
|
|
|
|
timerfunc = time.perf_counter |
|
|
|
|
|
class measure_time(object): |
|
|
def __enter__(self): |
|
|
self.start = timerfunc() |
|
|
return self |
|
|
|
|
|
def __exit__(self, typ, value, traceback): |
|
|
self.duration = timerfunc() - self.start |
|
|
|
|
|
def __add__(self, other): |
|
|
return self.duration + other.duration |
|
|
|
|
|
def __sub__(self, other): |
|
|
return self.duration - other.duration |
|
|
|
|
|
def __str__(self): |
|
|
return str(self.duration) |
|
|
|
|
|
|
|
|
def log_test_results(test_dir): |
|
|
test_dir = Path(test_dir) |
|
|
logs = [] |
|
|
for d in test_dir.iterdir(): |
|
|
if d.is_dir() and (d / "log.txt").exists(): |
|
|
print(d.name) |
|
|
with open(d / "log.txt") as f: |
|
|
last = f.readlines()[-1] |
|
|
j = json.loads(last) |
|
|
j['name'] = d.name |
|
|
logs.append(j) |
|
|
df = pd.DataFrame(logs) |
|
|
|
|
|
df.sort_values('name', inplace=True, ignore_index=True) |
|
|
cols = list(df.columns) |
|
|
cols = cols[-1:] + cols[:-1] |
|
|
df = df[cols] |
|
|
|
|
|
df.to_csv(test_dir / "logs.csv", index=False) |
|
|
|
|
|
|
|
|
COLORS = { |
|
|
'muted blue': '#1f77b4', |
|
|
'safety orange': '#ff7f0e', |
|
|
'cooked asparagus green': '#2ca02c', |
|
|
'brick red': '#d62728', |
|
|
'muted purple': '#9467bd', |
|
|
'chestnut brown': '#8c564b', |
|
|
'raspberry yogurt pink': '#e377c2', |
|
|
'middle gray': '#7f7f7f', |
|
|
'curry yellow-green': '#bcbd22', |
|
|
'blue-teal': '#17becf', |
|
|
'muted blue light': '#419ede', |
|
|
'safety orange light': '#ffa85b', |
|
|
'cooked asparagus green light': '#4bce4b', |
|
|
'brick red light': '#e36667' |
|
|
} |
|
|
|
|
|
|
|
|
def plot_test_results(test_dir): |
|
|
import plotly.graph_objects as go |
|
|
|
|
|
test_dir = Path(test_dir) |
|
|
df = pd.read_csv(test_dir / "logs.csv") |
|
|
df.sort_values('name', inplace=True) |
|
|
|
|
|
fig = go.Figure() |
|
|
fig.add_trace(go.Scatter(x=df['name'], y=df['MAE'], line_color=COLORS['muted blue'], |
|
|
mode='lines', name='MAE')) |
|
|
fig.add_trace(go.Scatter(x=df['name'], y=df['RMSE'], line_color=COLORS['safety orange'], |
|
|
mode='lines', name='RMSE')) |
|
|
fig.add_trace(go.Scatter(x=df['name'], y=df['NAE'], line_color=COLORS['cooked asparagus green'], |
|
|
mode='lines', name='NAE')) |
|
|
|
|
|
fig.update_yaxes(type="log") |
|
|
fig.write_image(test_dir / "plot.jpeg", scale=4) |
|
|
fig.write_html(test_dir / "plot.html", auto_open=False) |
|
|
|
|
|
|
|
|
def frames2vid(input_dir: str, output_file: str, pattern: str, fps: int, h=720, w=1280): |
|
|
input_dir = Path(input_dir) |
|
|
video_file = None |
|
|
files = sorted(input_dir.glob(pattern)) |
|
|
video_file = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) |
|
|
for img in tqdm(files, total=len(files)): |
|
|
frame = cv2.imread(str(img)) |
|
|
frame = cv2.resize(frame, (w, h)) |
|
|
video_file.write(frame) |
|
|
|
|
|
video_file.release() |
|
|
|