VA-Count / util /misc.py
HopooLinZ's picture
Upload 35 files
dc066a6 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import builtins
import datetime
import os
import time
import json
from collections import defaultdict, deque
from pathlib import Path
# from typing import Union
import pandas as pd
import torch
import torch.distributed as dist
import wandb
# from torch._six import inf
from torch import inf
import matplotlib.pyplot as plt
from torchvision import transforms
import cv2
from tqdm import tqdm
from typing import Union, List
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if self.count == 0:
# Return a default value or handle the zero count scenario
return 0 # Or any other default value or handling mechanism
else:
return self.total / self.count
# return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = force or (get_world_size() > 8)
if is_master or force:
now = datetime.datetime.now().time()
builtin_print('[{}] '.format(now), end='') # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
setup_for_distributed(is_master=True) # hack
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, suffix="", upload=True):
if suffix:
suffix = f"__{suffix}"
output_dir = Path(args.output_dir)
ckpt_name = f"checkpoint{suffix}.pth"
if loss_scaler is not None:
checkpoint_paths = [output_dir / ckpt_name]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
save_on_master(to_save, checkpoint_path)
if upload and is_main_process():
log_wandb_model(f"checkpoint{suffix}", checkpoint_path, epoch)
print("checkpoint sent to W&B (if)")
else:
client_state = {'epoch': epoch}
model.save_checkpoint(save_dir=args.output_dir, tag=ckpt_name, client_state=client_state)
if upload and is_main_process():
log_wandb_model(f"checkpoint{suffix}", output_dir / ckpt_name, epoch)
print("checkpoint sent to W&B (else)")
def log_wandb_model(title, path, epoch):
artifact = wandb.Artifact(title, type="model")
artifact.add_file(path)
artifact.metadata["epoch"] = epoch
wandb.log_artifact(artifact_or_path=artifact, name=title)
def load_model(args, model_without_ddp, optimizer, loss_scaler):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
if 'decoder_pos_embed' in checkpoint['model'] and checkpoint['model']['decoder_pos_embed'].shape != model_without_ddp.state_dict()['decoder_pos_embed'].shape:
print(f"Removing key decoder_pos_embed from pretrained checkpoint")
del checkpoint['model']['decoder_pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
def load_model_FSC(args, model_without_ddp):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print(f"Resume checkpoint {args.resume} ({checkpoint['epoch']})")
def load_model_FSC1(args, model_without_ddp):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
#model = timm.create_model('vit_base_patch16_224', pretrained=True)
#torch.save(model.state_dict(), './output_abnopre_dir/checkpoint-6657.pth')
checkpoint1 = torch.load('./output_abnopre_dir/checkpoint-6657.pth', map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
del checkpoint1['cls_token'],checkpoint1['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
model_without_ddp.load_state_dict(checkpoint1, strict=False)
print("Resume checkpoint %s" % args.resume)
def load_model_FSC_full(args, model_without_ddp, optimizer, loss_scaler):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != \
model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint and args.do_resume:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & scheduler!")
def all_reduce_mean(x):
world_size = get_world_size()
if world_size > 1:
x_reduce = torch.tensor(x).cuda()
dist.all_reduce(x_reduce)
x_reduce /= world_size
return x_reduce.item()
else:
return x
def plot_counts(res_csv: Union[str, List[str]], output_dir: str, suffix: str = "", smooth: bool = False):
if suffix:
suffix = f"_{suffix}"
if smooth:
suffix = f"_smooth{suffix}"
if type(res_csv) == str:
res_csv = [res_csv]
plt.figure(figsize=(15, 5))
for res in res_csv:
name = Path(res).parent.name
df = pd.read_csv(res)
print(df)
df.sort_values(by="name", inplace=True)
df.reset_index(drop=True, inplace=True)
df.index += 1
print(df)
if smooth:
time_arr = df.index[5:-5]
smooth_pred_mean = df['prediction'].iloc[5:-5].rolling(25).mean()
smooth_pred_std = df['prediction'].iloc[5:-5].rolling(25).std()
plt.plot(time_arr, smooth_pred_mean, label=name)
plt.fill_between(time_arr, smooth_pred_mean + smooth_pred_std, smooth_pred_mean - smooth_pred_std, alpha=.2)
plt.xlabel('Frame')
plt.ylabel('Count')
else:
plt.plot(df.index, df['prediction'], label=name)
plt.legend()
plt.savefig(os.path.join(output_dir, f'counts{suffix}.png'), dpi=300)
def write_zeroshot_annotations(p: Path):
with open(p / 'annotations.json', 'a') as split:
split.write('{\n')
for img in p.iterdir():
if img.is_file():
split.write(f' "{img.name}": {{\n' \
' "H": 960,\n' \
' "W": 1280,\n' \
' "box_examples_coordinates": [],\n' \
' "points": []\n' \
' },\n')
split.write("}")
with open(p / 'split.json', 'a') as split:
split.write('{\n "test":\n [\n')
for img in p.iterdir():
if img.is_file():
split.write(f' "{img.name}",\n')
split.write(" ]\n}")
def make_grid(imgs, h, w):
assert len(imgs) == 9
rows = []
for i in range(0, 9, 3):
row = torch.cat((imgs[i], imgs[i + 1], imgs[i + 2]), -1)
rows += [row]
grid = torch.cat((rows[0], rows[1], rows[2]), 0)
grid = transforms.Resize((h, w))(grid.unsqueeze(0))
return grid.squeeze(0)
def min_max(t):
t_shape = t.shape
t = t.view(t_shape[0], -1)
t -= t.min(1, keepdim=True)[0]
t /= t.max(1, keepdim=True)[0]
t = t.view(*t_shape)
return t
def min_max_np(v, new_min=0, new_max=1):
v_min, v_max = v.min(), v.max()
return (v - v_min) / (v_max - v_min) * (new_max - new_min) + new_min
def get_box_map(sample, pos, device, external=False):
box_map = torch.zeros([sample.shape[1], sample.shape[2]], device=device)
if external is False:
for rect in pos:
for i in range(rect[2] - rect[0]):
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[1], sample.shape[2] - 1)] = 10
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[3], sample.shape[2] - 1)] = 10
for i in range(rect[3] - rect[1]):
box_map[min(rect[0], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10
box_map[min(rect[2], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10
box_map = box_map.unsqueeze(0).repeat(3, 1, 1)
return box_map
timerfunc = time.perf_counter
class measure_time(object):
def __enter__(self):
self.start = timerfunc()
return self
def __exit__(self, typ, value, traceback):
self.duration = timerfunc() - self.start
def __add__(self, other):
return self.duration + other.duration
def __sub__(self, other):
return self.duration - other.duration
def __str__(self):
return str(self.duration)
def log_test_results(test_dir):
test_dir = Path(test_dir)
logs = []
for d in test_dir.iterdir():
if d.is_dir() and (d / "log.txt").exists():
print(d.name)
with open(d / "log.txt") as f:
last = f.readlines()[-1]
j = json.loads(last)
j['name'] = d.name
logs.append(j)
df = pd.DataFrame(logs)
df.sort_values('name', inplace=True, ignore_index=True)
cols = list(df.columns)
cols = cols[-1:] + cols[:-1]
df = df[cols]
df.to_csv(test_dir / "logs.csv", index=False)
COLORS = {
'muted blue': '#1f77b4',
'safety orange': '#ff7f0e',
'cooked asparagus green': '#2ca02c',
'brick red': '#d62728',
'muted purple': '#9467bd',
'chestnut brown': '#8c564b',
'raspberry yogurt pink': '#e377c2',
'middle gray': '#7f7f7f',
'curry yellow-green': '#bcbd22',
'blue-teal': '#17becf',
'muted blue light': '#419ede',
'safety orange light': '#ffa85b',
'cooked asparagus green light': '#4bce4b',
'brick red light': '#e36667'
}
def plot_test_results(test_dir):
import plotly.graph_objects as go
test_dir = Path(test_dir)
df = pd.read_csv(test_dir / "logs.csv")
df.sort_values('name', inplace=True)
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['name'], y=df['MAE'], line_color=COLORS['muted blue'],
mode='lines', name='MAE'))
fig.add_trace(go.Scatter(x=df['name'], y=df['RMSE'], line_color=COLORS['safety orange'],
mode='lines', name='RMSE'))
fig.add_trace(go.Scatter(x=df['name'], y=df['NAE'], line_color=COLORS['cooked asparagus green'],
mode='lines', name='NAE'))
fig.update_yaxes(type="log")
fig.write_image(test_dir / "plot.jpeg", scale=4)
fig.write_html(test_dir / "plot.html", auto_open=False)
def frames2vid(input_dir: str, output_file: str, pattern: str, fps: int, h=720, w=1280):
input_dir = Path(input_dir)
video_file = None
files = sorted(input_dir.glob(pattern))
video_file = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for img in tqdm(files, total=len(files)):
frame = cv2.imread(str(img))
frame = cv2.resize(frame, (w, h))
video_file.write(frame)
video_file.release()