|
|
--- |
|
|
license: mit |
|
|
language: |
|
|
- en |
|
|
pipeline_tag: text-classification |
|
|
--- |
|
|
# BogoAI Model |
|
|
|
|
|
BogoAI is a conceptual model inspired by Bogo Sort and the infinite monkey theorem. It generates random outputs and is not intended for practical use. It has a time complexity of O(n!) were as n is the length of the output text; |
|
|
|
|
|
## Model Details |
|
|
|
|
|
- **Vocabulary Size**: 152064 |
|
|
- **Tokenizer**: Qwen/Qwen2.5-72B-Instruct |
|
|
|
|
|
## Installation |
|
|
|
|
|
To use this model, install the required libraries: |
|
|
|
|
|
```bash |
|
|
pip install transformers huggingface_hub |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
Here's how to load and use the BogoAI model: |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
# Load tokenizer and model |
|
|
tokenizer = AutoTokenizer.from_pretrained("Hugo0123/BogoAI") |
|
|
model = AutoModel.from_pretrained("Hugo0123/BogoAI") |
|
|
# Example input |
|
|
input_text = "Example input text" |
|
|
input_ids = tokenizer.encode(input_text, return_tensors='pt') |
|
|
# Generate random output |
|
|
output_ids = model(input_ids=input_ids) |
|
|
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
print("Output:", output_text) |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
MIT |