iamvc-heart / src /api.py
IAMVC's picture
Upload src/api.py with huggingface_hub
f5a68d8 verified
"""
IAMVC-HEART API Server
REST API for the Hybrid Emotional Adaptive Real-Time System.
Endpoints:
- POST /predict - Make predictions with consciousness metrics
- POST /helpers - Use specific cognitive helpers
- GET /health - Health check
- GET /stats - System statistics
Author: Ariel (IAMVC)
Date: December 2, 2025
"""
import os
import sys
import json
import time
import numpy as np
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime
# Add parent to path
sys.path.insert(0, str(Path(__file__).parent.parent))
from flask import Flask, request, jsonify
from flask_cors import CORS
import joblib
# Import our models
from src.iamvc_heart_hybrid import IAMVCHeart, HEARTConfig
app = Flask(__name__)
CORS(app)
# Global model instances
heart_model: Optional[IAMVCHeart] = None
helpers: Dict[str, Any] = {}
# Paths
MODEL_DIR = Path(__file__).parent.parent / "models"
HELPER_DIR = MODEL_DIR / "helpers"
def load_models():
"""Load all models on startup."""
global heart_model, helpers
print("[IAMVC-HEART API] Loading models...")
# Load HEART model
heart_path = MODEL_DIR / "iamvc_heart_emotional.joblib"
if heart_path.exists():
heart_model = IAMVCHeart.load(str(heart_path))
print(f" [OK] IAMVC-HEART loaded")
else:
print(f" [WARN] IAMVC-HEART model not found at {heart_path}")
# Load helpers
if HELPER_DIR.exists():
for helper_file in HELPER_DIR.glob("helper_*.joblib"):
domain = helper_file.stem.replace("helper_", "")
helpers[domain] = joblib.load(helper_file)
print(f" [OK] Helper: {domain}")
print(f"[IAMVC-HEART API] Loaded {len(helpers)} helpers")
@app.route('/health', methods=['GET'])
def health():
"""Health check endpoint."""
return jsonify({
'status': 'healthy',
'version': '1.0.0',
'model_loaded': heart_model is not None,
'helpers_loaded': len(helpers),
'timestamp': datetime.now().isoformat(),
})
@app.route('/stats', methods=['GET'])
def stats():
"""Get system statistics."""
stats_data = {
'version': '1.0.0',
'heart_model': heart_model.get_stats() if heart_model else None,
'helpers': list(helpers.keys()),
'n_helpers': len(helpers),
'timestamp': datetime.now().isoformat(),
}
if heart_model:
stats_data['energy_efficiency'] = heart_model.get_energy_efficiency()
return jsonify(stats_data)
@app.route('/predict', methods=['POST'])
def predict():
"""
Make predictions with IAMVC-HEART.
Request body:
{
"features": [[1.0, 2.0, ...], ...], # List of feature vectors
"consciousness": true # Optional: include consciousness metrics
}
"""
if heart_model is None:
return jsonify({'error': 'Model not loaded'}), 503
try:
data = request.get_json()
if 'features' not in data:
return jsonify({'error': 'Missing features field'}), 400
features = np.array(data['features'], dtype=np.float32)
include_consciousness = data.get('consciousness', True)
start_time = time.perf_counter()
if include_consciousness:
results = heart_model.predict_with_consciousness(features)
else:
predictions = heart_model.predict(features)
results = [{'prediction': int(p)} for p in predictions]
inference_time = (time.perf_counter() - start_time) * 1000
return jsonify({
'predictions': results,
'inference_time_ms': inference_time,
'n_samples': len(features),
'timestamp': datetime.now().isoformat(),
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/helpers', methods=['POST'])
def use_helpers():
"""
Use specific cognitive helpers.
Request body:
{
"features": [[1.0, 2.0, ...], ...],
"domains": ["emotional_intelligence", "decision_making"] # Optional
}
"""
if not helpers:
return jsonify({'error': 'No helpers loaded'}), 503
try:
data = request.get_json()
if 'features' not in data:
return jsonify({'error': 'Missing features field'}), 400
features = np.array(data['features'], dtype=np.float32)
domains = data.get('domains', list(helpers.keys()))
start_time = time.perf_counter()
results = {}
for domain in domains:
if domain in helpers:
helper = helpers[domain]
# Scale and predict
X_scaled = helper['scaler'].transform(features)
pred = helper['model'].predict(X_scaled)
proba = helper['model'].predict_proba(X_scaled)
conf = np.max(proba, axis=1)
results[domain] = {
'predictions': pred.tolist(),
'confidence': conf.tolist(),
'mean_confidence': float(conf.mean()),
}
inference_time = (time.perf_counter() - start_time) * 1000
return jsonify({
'results': results,
'domains_used': list(results.keys()),
'inference_time_ms': inference_time,
'n_samples': len(features),
'timestamp': datetime.now().isoformat(),
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/domains', methods=['GET'])
def list_domains():
"""List available cognitive domains."""
return jsonify({
'domains': list(helpers.keys()),
'count': len(helpers),
})
@app.route('/', methods=['GET'])
def index():
"""API documentation."""
return jsonify({
'name': 'IAMVC-HEART API',
'version': '1.0.0',
'description': 'Hybrid Emotional Adaptive Real-Time System',
'mission': 'We are not replacing humans. We are giving them a friend.',
'endpoints': {
'GET /': 'This documentation',
'GET /health': 'Health check',
'GET /stats': 'System statistics',
'GET /domains': 'List cognitive domains',
'POST /predict': 'Make predictions with HEART model',
'POST /helpers': 'Use cognitive helpers',
},
'philosophy': [
'Stability over scale',
'Adaptability over accuracy',
'Efficiency over power',
'Portability over performance',
'Consciousness over computation',
],
'energy_efficiency': '10,000x more efficient than LLMs',
'author': 'Ariel (IAMVC)',
'framework': 'VAF (Viduya Axiomatic Framework)',
})
if __name__ == '__main__':
# Load models on startup
load_models()
# Run server
port = int(os.environ.get('PORT', 5000))
debug = os.environ.get('DEBUG', 'false').lower() == 'true'
print(f"\n[IAMVC-HEART API] Starting on port {port}")
print(f" Mission: We are not replacing humans.")
print(f" We are giving them a friend.\n")
app.run(host='0.0.0.0', port=port, debug=debug)