| # DeepLabv3Plus-Pytorch | |
| Pretrained DeepLabv3, DeepLabv3+ for Pascal VOC & Cityscapes. | |
| ## Quick Start | |
| ### 1. Available Architectures | |
| | DeepLabV3 | DeepLabV3+ | | |
| | :---: | :---: | | |
| |deeplabv3_resnet50|deeplabv3plus_resnet50| | |
| |deeplabv3_resnet101|deeplabv3plus_resnet101| | |
| |deeplabv3_mobilenet|deeplabv3plus_mobilenet || | |
| |deeplabv3_hrnetv2_48 | deeplabv3plus_hrnetv2_48 | | |
| |deeplabv3_hrnetv2_32 | deeplabv3plus_hrnetv2_32 | | |
| |deeplabv3_xception | deeplabv3plus_xception | | |
| please refer to [network/modeling.py](https://github.com/VainF/DeepLabV3Plus-Pytorch/blob/master/network/modeling.py) for all model entries. | |
| Download pretrained models: [Dropbox](https://www.dropbox.com/sh/w3z9z8lqpi8b2w7/AAB0vkl4F5vy6HdIhmRCTKHSa?dl=0), [Tencent Weiyun](https://share.weiyun.com/qqx78Pv5) | |
| Note: The HRNet backbone was contributed by @timothylimyl. A pre-trained backbone is available at [google drive](https://drive.google.com/file/d/1NxCK7Zgn5PmeS7W1jYLt5J9E0RRZ2oyF/view?usp=sharing). | |
| ### 2. Load the pretrained model: | |
| ```python | |
| model = network.modeling.__dict__[MODEL_NAME](num_classes=NUM_CLASSES, output_stride=OUTPUT_SRTIDE) | |
| model.load_state_dict( torch.load( PATH_TO_PTH )['model_state'] ) | |
| ``` | |
| ### 3. Visualize segmentation outputs: | |
| ```python | |
| outputs = model(images) | |
| preds = outputs.max(1)[1].detach().cpu().numpy() | |
| colorized_preds = val_dst.decode_target(preds).astype('uint8') # To RGB images, (N, H, W, 3), ranged 0~255, numpy array | |
| # Do whatever you like here with the colorized segmentation maps | |
| colorized_preds = Image.fromarray(colorized_preds[0]) # to PIL Image | |
| ``` | |
| ### 4. Atrous Separable Convolution | |
| **Note**: All pre-trained models in this repo were trained without atrous separable convolution. | |
| Atrous Separable Convolution is supported in this repo. We provide a simple tool ``network.convert_to_separable_conv`` to convert ``nn.Conv2d`` to ``AtrousSeparableConvolution``. **Please run main.py with '--separable_conv' if it is required**. See 'main.py' and 'network/_deeplab.py' for more details. | |
| ### 5. Prediction | |
| Single image: | |
| ```bash | |
| python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen/bremen_000000_000019_leftImg8bit.png --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results | |
| ``` | |
| Image folder: | |
| ```bash | |
| python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results | |
| ``` | |
| ### 6. New backbones | |
| Please refer to [this commit (Xception)](https://github.com/VainF/DeepLabV3Plus-Pytorch/commit/c4b51e435e32b0deba5fc7c8ff106293df90590d) for more details about how to add new backbones. | |
| ### 7. New datasets | |
| You can train deeplab models on your own datasets. Your ``torch.utils.data.Dataset`` should provide a decoding method that transforms your predictions to colorized images, just like the [VOC Dataset](https://github.com/VainF/DeepLabV3Plus-Pytorch/blob/bfe01d5fca5b6bb648e162d522eed1a9a8b324cb/datasets/voc.py#L156): | |
| ```python | |
| class MyDataset(data.Dataset): | |
| ... | |
| @classmethod | |
| def decode_target(cls, mask): | |
| """decode semantic mask to RGB image""" | |
| return cls.cmap[mask] | |
| ``` | |
| ## Results | |
| ### 1. Performance on Pascal VOC2012 Aug (21 classes, 513 x 513) | |
| Training: 513x513 random crop | |
| validation: 513x513 center crop | |
| | Model | Batch Size | FLOPs | train/val OS | mIoU | Dropbox | Tencent Weiyun | | |
| | :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | :----: | | |
| | DeepLabV3-MobileNet | 16 | 6.0G | 16/16 | 0.701 | [Download](https://www.dropbox.com/s/uhksxwfcim3nkpo/best_deeplabv3_mobilenet_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/A4ubD1DD) | | |
| | DeepLabV3-ResNet50 | 16 | 51.4G | 16/16 | 0.769 | [Download](https://www.dropbox.com/s/3eag5ojccwiexkq/best_deeplabv3_resnet50_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/33eLjnVL) | | |
| | DeepLabV3-ResNet101 | 16 | 72.1G | 16/16 | 0.773 | [Download](https://www.dropbox.com/s/vtenndnsrnh4068/best_deeplabv3_resnet101_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/iCkzATAw) | | |
| | DeepLabV3Plus-MobileNet | 16 | 17.0G | 16/16 | 0.711 | [Download](https://www.dropbox.com/s/0idrhwz6opaj7q4/best_deeplabv3plus_mobilenet_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/djX6MDwM) | | |
| | DeepLabV3Plus-ResNet50 | 16 | 62.7G | 16/16 | 0.772 | [Download](https://www.dropbox.com/s/dgxyd3jkyz24voa/best_deeplabv3plus_resnet50_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/uTM4i2jG) | | |
| | DeepLabV3Plus-ResNet101 | 16 | 83.4G | 16/16 | 0.783 | [Download](https://www.dropbox.com/s/bm3hxe7wmakaqc5/best_deeplabv3plus_resnet101_voc_os16.pth?dl=0) | [Download](https://share.weiyun.com/UNPZr3dk) | | |
| ### 2. Performance on Cityscapes (19 classes, 1024 x 2048) | |
| Training: 768x768 random crop | |
| validation: 1024x2048 | |
| | Model | Batch Size | FLOPs | train/val OS | mIoU | Dropbox | Tencent Weiyun | | |
| | :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | :----: | | |
| | DeepLabV3Plus-MobileNet | 16 | 135G | 16/16 | 0.721 | [Download](https://www.dropbox.com/s/753ojyvsh3vdjol/best_deeplabv3plus_mobilenet_cityscapes_os16.pth?dl=0) | [Download](https://share.weiyun.com/aSKjdpbL) | |
| | DeepLabV3Plus-ResNet101 | 16 | N/A | 16/16 | 0.762 | [Download](https://drive.google.com/file/d/1t7TC8mxQaFECt4jutdq_NMnWxdm6B-Nb/view?usp=sharing) | N/A | | |
| #### Segmentation Results on Pascal VOC2012 (DeepLabv3Plus-MobileNet) | |
| <div> | |
| <img src="samples/1_image.png" width="20%"> | |
| <img src="samples/1_target.png" width="20%"> | |
| <img src="samples/1_pred.png" width="20%"> | |
| <img src="samples/1_overlay.png" width="20%"> | |
| </div> | |
| <div> | |
| <img src="samples/23_image.png" width="20%"> | |
| <img src="samples/23_target.png" width="20%"> | |
| <img src="samples/23_pred.png" width="20%"> | |
| <img src="samples/23_overlay.png" width="20%"> | |
| </div> | |
| <div> | |
| <img src="samples/114_image.png" width="20%"> | |
| <img src="samples/114_target.png" width="20%"> | |
| <img src="samples/114_pred.png" width="20%"> | |
| <img src="samples/114_overlay.png" width="20%"> | |
| </div> | |
| #### Segmentation Results on Cityscapes (DeepLabv3Plus-MobileNet) | |
| <div> | |
| <img src="samples/city_1_target.png" width="45%"> | |
| <img src="samples/city_1_overlay.png" width="45%"> | |
| </div> | |
| <div> | |
| <img src="samples/city_6_target.png" width="45%"> | |
| <img src="samples/city_6_overlay.png" width="45%"> | |
| </div> | |
| #### Visualization of training | |
|  | |
| ## Pascal VOC | |
| ### 1. Requirements | |
| ```bash | |
| pip install -r requirements.txt | |
| ``` | |
| ### 2. Prepare Datasets | |
| #### 2.1 Standard Pascal VOC | |
| You can run train.py with "--download" option to download and extract pascal voc dataset. The defaut path is './datasets/data': | |
| ``` | |
| /datasets | |
| /data | |
| /VOCdevkit | |
| /VOC2012 | |
| /SegmentationClass | |
| /JPEGImages | |
| ... | |
| ... | |
| /VOCtrainval_11-May-2012.tar | |
| ... | |
| ``` | |
| #### 2.2 Pascal VOC trainaug (Recommended!!) | |
| See chapter 4 of [2] | |
| The original dataset contains 1464 (train), 1449 (val), and 1456 (test) pixel-level annotated images. We augment the dataset by the extra annotations provided by [76], resulting in 10582 (trainaug) training images. The performance is measured in terms of pixel intersection-over-union averaged across the 21 classes (mIOU). | |
| *./datasets/data/train_aug.txt* includes the file names of 10582 trainaug images (val images are excluded). Please to download their labels from [Dropbox](https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip?dl=0) or [Tencent Weiyun](https://share.weiyun.com/5NmJ6Rk). Those labels come from [DrSleep's repo](https://github.com/DrSleep/tensorflow-deeplab-resnet). | |
| Extract trainaug labels (SegmentationClassAug) to the VOC2012 directory. | |
| ``` | |
| /datasets | |
| /data | |
| /VOCdevkit | |
| /VOC2012 | |
| /SegmentationClass | |
| /SegmentationClassAug # <= the trainaug labels | |
| /JPEGImages | |
| ... | |
| ... | |
| /VOCtrainval_11-May-2012.tar | |
| ... | |
| ``` | |
| ### 3. Training on Pascal VOC2012 Aug | |
| #### 3.1 Visualize training (Optional) | |
| Start visdom sever for visualization. Please remove '--enable_vis' if visualization is not needed. | |
| ```bash | |
| # Run visdom server on port 28333 | |
| visdom -port 28333 | |
| ``` | |
| #### 3.2 Training with OS=16 | |
| Run main.py with *"--year 2012_aug"* to train your model on Pascal VOC2012 Aug. You can also parallel your training on 4 GPUs with '--gpu_id 0,1,2,3' | |
| **Note: There is no SyncBN in this repo, so training with *multple GPUs and small batch size* may degrades the performance. See [PyTorch-Encoding](https://hangzhang.org/PyTorch-Encoding/tutorials/syncbn.html) for more details about SyncBN** | |
| ```bash | |
| python main.py --model deeplabv3plus_mobilenet --enable_vis --vis_port 28333 --gpu_id 0 --year 2012_aug --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16 | |
| ``` | |
| #### 3.3 Continue training | |
| Run main.py with '--continue_training' to restore the state_dict of optimizer and scheduler from YOUR_CKPT. | |
| ```bash | |
| python main.py ... --ckpt YOUR_CKPT --continue_training | |
| ``` | |
| #### 3.4. Testing | |
| Results will be saved at ./results. | |
| ```bash | |
| python main.py --model deeplabv3plus_mobilenet --enable_vis --vis_port 28333 --gpu_id 0 --year 2012_aug --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16 --ckpt checkpoints/best_deeplabv3plus_mobilenet_voc_os16.pth --test_only --save_val_results | |
| ``` | |
| ## Cityscapes | |
| ### 1. Download cityscapes and extract it to 'datasets/data/cityscapes' | |
| ``` | |
| /datasets | |
| /data | |
| /cityscapes | |
| /gtFine | |
| /leftImg8bit | |
| ``` | |
| ### 2. Train your model on Cityscapes | |
| ```bash | |
| python main.py --model deeplabv3plus_mobilenet --dataset cityscapes --enable_vis --vis_port 28333 --gpu_id 0 --lr 0.1 --crop_size 768 --batch_size 16 --output_stride 16 --data_root ./datasets/data/cityscapes | |
| ``` | |
| ## Reference | |
| [1] [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587) | |
| [2] [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611) | |