Update moondream.py
Browse files- moondream.py +149 -129
moondream.py
CHANGED
|
@@ -76,48 +76,54 @@ class KVCache(nn.Module):
|
|
| 76 |
def update(self, pos_ids, k, v):
|
| 77 |
"""
|
| 78 |
Supports:
|
| 79 |
-
• Prefill:
|
| 80 |
-
•
|
|
|
|
|
|
|
| 81 |
"""
|
| 82 |
-
kout, vout = self.k_cache, self.v_cache
|
| 83 |
|
|
|
|
| 84 |
if not torch.is_tensor(pos_ids):
|
| 85 |
pos_ids = torch.tensor(pos_ids, device=k.device, dtype=torch.long)
|
| 86 |
else:
|
| 87 |
-
pos_ids = pos_ids.to(k.device, dtype=torch.long)
|
| 88 |
|
| 89 |
if k.dim() != 4 or v.dim() != 4:
|
| 90 |
raise RuntimeError(f"KV update expects k,v 4D. Got k={tuple(k.shape)} v={tuple(v.shape)}")
|
|
|
|
| 91 |
B, Hkv, q_len, D = k.shape
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
if
|
| 95 |
-
if
|
| 96 |
-
self.k_cache =
|
| 97 |
-
self.v_cache =
|
| 98 |
kout, vout = self.k_cache, self.v_cache
|
| 99 |
else:
|
| 100 |
-
raise RuntimeError(f"KV cache batch mismatch: cache.B={
|
| 101 |
|
| 102 |
-
#
|
| 103 |
if pos_ids.dim() == 1 and pos_ids.numel() == q_len:
|
| 104 |
for i in range(B):
|
| 105 |
kout[i, :, pos_ids, :] = k[i]
|
| 106 |
vout[i, :, pos_ids, :] = v[i]
|
| 107 |
return kout, vout
|
| 108 |
|
| 109 |
-
#
|
| 110 |
-
if q_len == 1 and pos_ids.numel()
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
| 121 |
return kout, vout
|
| 122 |
|
| 123 |
raise RuntimeError(f"Unsupported KV update combo: k={tuple(k.shape)}, pos_ids={tuple(pos_ids.shape)}")
|
|
@@ -211,6 +217,7 @@ class MoondreamModel(nn.Module):
|
|
| 211 |
|
| 212 |
|
| 213 |
|
|
|
|
| 214 |
|
| 215 |
|
| 216 |
def _setup_caches(self):
|
|
@@ -562,47 +569,46 @@ class MoondreamModel(nn.Module):
|
|
| 562 |
|
| 563 |
return generator(next_token, pos)
|
| 564 |
|
| 565 |
-
def encode_image(
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
settings: Optional[ImageEncodingSettings] = None,
|
| 569 |
-
) -> EncodedImage:
|
| 570 |
-
# Always start from single-row caches; avoids leftovers from batched runs
|
| 571 |
-
self._setup_caches() # re-create caches (B=1)
|
| 572 |
-
for blk in self.text.blocks: # make absolutely sure batch dim == 1
|
| 573 |
-
if blk.kv_cache.k_cache.size(0) != 1:
|
| 574 |
-
blk.kv_cache.k_cache = blk.kv_cache.k_cache[:1].contiguous()
|
| 575 |
-
blk.kv_cache.v_cache = blk.kv_cache.v_cache[:1].contiguous()
|
| 576 |
|
| 577 |
if isinstance(image, EncodedImage):
|
| 578 |
return image
|
| 579 |
if not isinstance(image, Image.Image):
|
| 580 |
raise ValueError("image must be a PIL Image or EncodedImage")
|
| 581 |
|
| 582 |
-
|
| 583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
|
| 585 |
with torch.inference_mode():
|
| 586 |
-
img_emb = self._run_vision_encoder(image)
|
| 587 |
-
bos_emb = text_encoder(torch.tensor([[self.config.tokenizer.bos_id]], device=self.device), self.text)
|
| 588 |
-
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
|
| 589 |
-
|
| 590 |
-
|
|
|
|
| 591 |
self._prefill(inputs_embeds, mask, pos_ids, lora)
|
| 592 |
|
|
|
|
| 593 |
return EncodedImage(
|
| 594 |
-
pos=
|
| 595 |
caches=[
|
| 596 |
-
(
|
| 597 |
-
|
| 598 |
-
b.kv_cache.v_cache[:, :, :inputs_embeds.size(1), :].clone(),
|
| 599 |
-
)
|
| 600 |
for b in self.text.blocks
|
| 601 |
],
|
| 602 |
)
|
| 603 |
|
| 604 |
|
| 605 |
|
|
|
|
| 606 |
def query(
|
| 607 |
self,
|
| 608 |
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
|
@@ -893,8 +899,36 @@ class MoondreamModel(nn.Module):
|
|
| 893 |
|
| 894 |
return {"points": objects}
|
| 895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
|
| 897 |
-
# -------------------- batched helpers --------------------
|
| 898 |
def _load_encoded_image_batched(self, encoded_image, batch_size: int):
|
| 899 |
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
| 900 |
T = k.size(2)
|
|
@@ -906,60 +940,62 @@ class MoondreamModel(nn.Module):
|
|
| 906 |
b.kv_cache.k_cache[:, :, :T, :] = k.expand(batch_size, -1, -1, -1)
|
| 907 |
b.kv_cache.v_cache[:, :, :T, :] = v.expand(batch_size, -1, -1, -1)
|
| 908 |
|
| 909 |
-
|
|
|
|
|
|
|
| 910 |
tpl = self.config.tokenizer.templates["detect"]
|
| 911 |
if tpl is None:
|
| 912 |
-
raise NotImplementedError("Model does not support object detection
|
| 913 |
|
| 914 |
rows, lens = [], []
|
| 915 |
for lab in labels:
|
| 916 |
ids = tpl["prefix"] + self.tokenizer.encode(" " + lab).ids + tpl["suffix"]
|
| 917 |
t = torch.tensor(ids, device=self.device, dtype=torch.long)
|
| 918 |
rows.append(t); lens.append(t.numel())
|
| 919 |
-
B = len(rows)
|
| 920 |
eos = self.config.tokenizer.eos_id
|
| 921 |
|
| 922 |
prompt_ids = torch.full((B, T), eos, device=self.device, dtype=torch.long)
|
| 923 |
for i, ids in enumerate(rows):
|
| 924 |
prompt_ids[i, : ids.numel()] = ids
|
| 925 |
|
| 926 |
-
prompt_emb = text_encoder(prompt_ids, self.text)
|
| 927 |
-
torch._dynamo.mark_dynamic(prompt_emb, 1)
|
| 928 |
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
mask = base.expand(B, -1, -1, -1).contiguous() # (B,1,T,K)
|
| 932 |
|
| 933 |
-
# IMPORTANT: for prefill pass a 1-D vector of length T (matches upstream)
|
| 934 |
pos_ids = torch.arange(pos, pos + T, device=self.device, dtype=torch.long) # (T,)
|
| 935 |
-
hidden_BTC = self._prefill(prompt_emb, mask, pos_ids, lora)
|
| 936 |
-
logits_BTV = lm_head(hidden_BTC, self.text)
|
| 937 |
|
| 938 |
-
idx = (torch.tensor(lens, device=self.device) - 1).clamp_min(0)
|
| 939 |
last_hidden = hidden_BTC[torch.arange(B, device=self.device), idx][:, None, :] # (B,1,C)
|
| 940 |
last_logits = logits_BTV[torch.arange(B, device=self.device), idx] # (B,V)
|
| 941 |
|
| 942 |
if temperature == 0.0:
|
| 943 |
-
next_token = last_logits.argmax(dim=-1, keepdim=True)
|
| 944 |
else:
|
| 945 |
probs = torch.softmax(last_logits / temperature, dim=-1)
|
| 946 |
probs = self._apply_top_p(probs, top_p)
|
| 947 |
-
next_token = torch.multinomial(probs, num_samples=1)
|
| 948 |
|
| 949 |
-
# shared
|
| 950 |
-
|
|
|
|
|
|
|
| 951 |
|
| 952 |
|
| 953 |
|
| 954 |
def _generate_points_batched(
|
| 955 |
self,
|
| 956 |
hidden, # (B,1,C)
|
| 957 |
-
next_token, # (B,1)
|
| 958 |
pos, # int
|
| 959 |
include_size: bool = True,
|
| 960 |
max_objects: int = 50,
|
| 961 |
lora=None,
|
| 962 |
-
use_soft_argmax: bool =
|
| 963 |
):
|
| 964 |
B = hidden.size(0)
|
| 965 |
device = self.device
|
|
@@ -967,78 +1003,67 @@ class MoondreamModel(nn.Module):
|
|
| 967 |
eos_id = self.config.tokenizer.eos_id
|
| 968 |
max_ctx = self.config.text.max_context
|
| 969 |
|
| 970 |
-
# 4-D mask: (B,1,1,kv_len)
|
| 971 |
mask = torch.zeros(B, 1, 1, max_ctx, device=device, dtype=torch.bool)
|
| 972 |
-
if pos > 0:
|
| 973 |
-
mask[:, :, :, :pos] = True
|
|
|
|
| 974 |
|
| 975 |
-
#
|
| 976 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 977 |
|
| 978 |
alive = torch.ones(B, dtype=torch.bool, device=device)
|
| 979 |
counts = torch.zeros(B, dtype=torch.int32, device=device)
|
| 980 |
|
| 981 |
-
def _center01(logits_2d):
|
| 982 |
-
# logits_2d: (B, bins)
|
| 983 |
-
if logits_2d.dim() == 3: # (B,1,bins) -> (B,bins)
|
| 984 |
-
logits_2d = logits_2d.squeeze(1)
|
| 985 |
-
bins = logits_2d.size(-1)
|
| 986 |
-
if use_soft_argmax:
|
| 987 |
-
p = torch.softmax(logits_2d, dim=-1)
|
| 988 |
-
idx = (p * torch.arange(bins, device=logits_2d.device, dtype=torch.float32)).sum(dim=-1)
|
| 989 |
-
return idx / float(bins) # match upstream scale
|
| 990 |
-
else:
|
| 991 |
-
return logits_2d.argmax(dim=-1).to(torch.float32) / float(bins)
|
| 992 |
-
|
| 993 |
with torch.inference_mode():
|
| 994 |
while alive.any() and (counts < max_objects).any():
|
| 995 |
-
#
|
| 996 |
-
x_logits = decode_coordinate(hidden, self.region)
|
| 997 |
-
|
| 998 |
-
|
|
|
|
| 999 |
|
| 1000 |
-
mask[alive, :, :,
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
pos_id_vec[0] = pos
|
| 1004 |
|
| 1005 |
-
#
|
| 1006 |
y_logits = decode_coordinate(hidden, self.region)
|
| 1007 |
-
|
| 1008 |
-
|
|
|
|
| 1009 |
|
| 1010 |
-
mask[alive, :, :,
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
pos_id_vec[0] = pos
|
| 1014 |
|
| 1015 |
if include_size:
|
| 1016 |
-
# --- size ---
|
| 1017 |
size_ret = decode_size(hidden, self.region)
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
|
|
|
|
|
|
|
|
|
| 1021 |
else:
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
w_logits, h_logits = size_ret[:, 0], size_ret[:, 1]
|
| 1025 |
-
else: # (B,1,2,1024)
|
| 1026 |
-
w_logits, h_logits = size_ret[:, 0, 0], size_ret[:, 0, 1]
|
| 1027 |
-
if w_logits.dim() == 3: w_logits = w_logits.squeeze(1)
|
| 1028 |
-
if h_logits.dim() == 3: h_logits = h_logits.squeeze(1)
|
| 1029 |
|
| 1030 |
-
#
|
| 1031 |
-
w_bin = w_logits.argmax(dim=-1).to(torch.float32)
|
| 1032 |
-
h_bin = h_logits.argmax(dim=-1).to(torch.float32)
|
| 1033 |
w = torch.pow(2.0, (w_bin / 1023.0) * 10.0 - 10.0)
|
| 1034 |
h = torch.pow(2.0, (h_bin / 1023.0) * 10.0 - 10.0)
|
| 1035 |
|
| 1036 |
-
size_emb = encode_size(torch.stack([w, h], dim=1).to(w_logits.dtype), self.region).unsqueeze(1)
|
| 1037 |
|
| 1038 |
-
#
|
| 1039 |
for i in range(B):
|
| 1040 |
-
if not alive[i]:
|
| 1041 |
-
continue
|
| 1042 |
xl = (x_center[i] - w[i] / 2).item()
|
| 1043 |
xr = (x_center[i] + w[i] / 2).item()
|
| 1044 |
yt = (y_center[i] - h[i] / 2).item()
|
|
@@ -1050,19 +1075,17 @@ class MoondreamModel(nn.Module):
|
|
| 1050 |
"y_max": max(0.0, min(1.0, yb)),
|
| 1051 |
})
|
| 1052 |
|
| 1053 |
-
mask[alive, :, :,
|
| 1054 |
-
logits, hidden = self._decode_one_tok(size_emb, mask,
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
next_tok = logits.argmax(dim=-1).squeeze(-1) # (B,)
|
| 1058 |
else:
|
| 1059 |
for i in range(B):
|
| 1060 |
if alive[i]:
|
| 1061 |
out[i].append({"x": x_center[i].item(), "y": y_center[i].item()})
|
| 1062 |
-
mask[alive, :, :,
|
| 1063 |
-
logits, hidden = self._decode_one_tok(y_emb, mask,
|
| 1064 |
-
|
| 1065 |
-
pos_id_vec[0] = pos
|
| 1066 |
next_tok = logits.argmax(dim=-1).squeeze(-1)
|
| 1067 |
|
| 1068 |
finished_now = (next_tok == eos_id) | (counts >= max_objects - 1)
|
|
@@ -1071,10 +1094,6 @@ class MoondreamModel(nn.Module):
|
|
| 1071 |
|
| 1072 |
return out
|
| 1073 |
|
| 1074 |
-
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
def detect_multi(self, image, objects, settings=None):
|
| 1079 |
if self.config.tokenizer.templates["detect"] is None:
|
| 1080 |
raise NotImplementedError("Model does not support object detection.")
|
|
@@ -1103,7 +1122,7 @@ class MoondreamModel(nn.Module):
|
|
| 1103 |
d["label"] = lab
|
| 1104 |
res[lab] = lst
|
| 1105 |
|
| 1106 |
-
#
|
| 1107 |
self._reset_kv_caches(1)
|
| 1108 |
return {"objects": res}
|
| 1109 |
|
|
@@ -1111,6 +1130,7 @@ class MoondreamModel(nn.Module):
|
|
| 1111 |
|
| 1112 |
|
| 1113 |
|
|
|
|
| 1114 |
def _detect_gaze(
|
| 1115 |
self,
|
| 1116 |
image: EncodedImage,
|
|
|
|
| 76 |
def update(self, pos_ids, k, v):
|
| 77 |
"""
|
| 78 |
Supports:
|
| 79 |
+
• Prefill: k,v = (B, n_kv_heads, q_len, d), pos_ids = (q_len,)
|
| 80 |
+
• Step: k,v = (B, n_kv_heads, 1, d), pos_ids = (B,) or (B,1)
|
| 81 |
+
• Legacy: k,v = (1, n_kv_heads, q_len, d), pos_ids = scalar
|
| 82 |
+
Writes into self.k_cache/self.v_cache shaped (B, n_kv_heads, T_max, d).
|
| 83 |
"""
|
| 84 |
+
kout, vout = self.kv_cache if hasattr(self, "kv_cache") else (self.k_cache, self.v_cache)
|
| 85 |
|
| 86 |
+
# normalize pos_ids
|
| 87 |
if not torch.is_tensor(pos_ids):
|
| 88 |
pos_ids = torch.tensor(pos_ids, device=k.device, dtype=torch.long)
|
| 89 |
else:
|
| 90 |
+
pos_ids = pos_ids.to(device=k.device, dtype=torch.long)
|
| 91 |
|
| 92 |
if k.dim() != 4 or v.dim() != 4:
|
| 93 |
raise RuntimeError(f"KV update expects k,v 4D. Got k={tuple(k.shape)} v={tuple(v.shape)}")
|
| 94 |
+
|
| 95 |
B, Hkv, q_len, D = k.shape
|
| 96 |
|
| 97 |
+
# match cache batch to B (expand-from-1 allowed)
|
| 98 |
+
if self.k_cache.size(0) != B:
|
| 99 |
+
if self.k_cache.size(0) == 1:
|
| 100 |
+
self.k_cache = self.k_cache.expand(B, -1, -1, -1).clone()
|
| 101 |
+
self.v_cache = self.v_cache.expand(B, -1, -1, -1).clone()
|
| 102 |
kout, vout = self.k_cache, self.v_cache
|
| 103 |
else:
|
| 104 |
+
raise RuntimeError(f"KV cache batch mismatch: cache.B={self.k_cache.size(0)} vs k.B={B}")
|
| 105 |
|
| 106 |
+
# Case A: prefill — vector of length q_len (same for all rows)
|
| 107 |
if pos_ids.dim() == 1 and pos_ids.numel() == q_len:
|
| 108 |
for i in range(B):
|
| 109 |
kout[i, :, pos_ids, :] = k[i]
|
| 110 |
vout[i, :, pos_ids, :] = v[i]
|
| 111 |
return kout, vout
|
| 112 |
|
| 113 |
+
# Case B: single step — q_len==1 with per-row positions
|
| 114 |
+
if q_len == 1 and pos_ids.numel() == B:
|
| 115 |
+
pos_ids = pos_ids.view(B)
|
| 116 |
+
for i in range(B):
|
| 117 |
+
pi = int(pos_ids[i].item())
|
| 118 |
+
kout[i, :, pi, :] = k[i, :, 0, :]
|
| 119 |
+
vout[i, :, pi, :] = v[i, :, 0, :]
|
| 120 |
+
return kout, vout
|
| 121 |
+
|
| 122 |
+
# Case C: scalar & q_len==1
|
| 123 |
+
if pos_ids.dim() == 0 and q_len == 1:
|
| 124 |
+
pi = int(pos_ids.item())
|
| 125 |
+
kout[:, :, pi, :] = k[:, :, 0, :]
|
| 126 |
+
vout[:, :, pi, :] = v[:, :, 0, :]
|
| 127 |
return kout, vout
|
| 128 |
|
| 129 |
raise RuntimeError(f"Unsupported KV update combo: k={tuple(k.shape)}, pos_ids={tuple(pos_ids.shape)}")
|
|
|
|
| 217 |
|
| 218 |
|
| 219 |
|
| 220 |
+
|
| 221 |
|
| 222 |
|
| 223 |
def _setup_caches(self):
|
|
|
|
| 569 |
|
| 570 |
return generator(next_token, pos)
|
| 571 |
|
| 572 |
+
def encode_image(self, image, settings=None) -> EncodedImage:
|
| 573 |
+
# always start from B=1 to avoid leftovers from batched runs
|
| 574 |
+
self._setup_caches() # recreates caches with B=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
|
| 576 |
if isinstance(image, EncodedImage):
|
| 577 |
return image
|
| 578 |
if not isinstance(image, Image.Image):
|
| 579 |
raise ValueError("image must be a PIL Image or EncodedImage")
|
| 580 |
|
| 581 |
+
# hard-trim to B=1 if external code changed it
|
| 582 |
+
for blk in self.text.blocks:
|
| 583 |
+
if blk.kv_cache.k_cache.size(0) != 1:
|
| 584 |
+
blk.kv_cache.k_cache = blk.kv_cache.k_cache[:1].contiguous()
|
| 585 |
+
blk.kv_cache.v_cache = blk.kv_cache.v_cache[:1].contiguous()
|
| 586 |
+
|
| 587 |
+
lora = variant_state_dict(settings["variant"], device=self.device) \
|
| 588 |
+
if settings and "variant" in settings else None
|
| 589 |
|
| 590 |
with torch.inference_mode():
|
| 591 |
+
img_emb = self._run_vision_encoder(image) # (T_img,C)
|
| 592 |
+
bos_emb = text_encoder(torch.tensor([[self.config.tokenizer.bos_id]], device=self.device), self.text) # (1,1,C)
|
| 593 |
+
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1) # (1,T0,C)
|
| 594 |
+
|
| 595 |
+
mask = self.attn_mask[:, :, :inputs_embeds.size(1), :] # (1,1,T0,K)
|
| 596 |
+
pos_ids = torch.arange(inputs_embeds.size(1), device=self.device, dtype=torch.long) # (T0,)
|
| 597 |
self._prefill(inputs_embeds, mask, pos_ids, lora)
|
| 598 |
|
| 599 |
+
T0 = inputs_embeds.size(1)
|
| 600 |
return EncodedImage(
|
| 601 |
+
pos=T0,
|
| 602 |
caches=[
|
| 603 |
+
(b.kv_cache.k_cache[:, :, :T0, :].clone(),
|
| 604 |
+
b.kv_cache.v_cache[:, :, :T0, :].clone())
|
|
|
|
|
|
|
| 605 |
for b in self.text.blocks
|
| 606 |
],
|
| 607 |
)
|
| 608 |
|
| 609 |
|
| 610 |
|
| 611 |
+
|
| 612 |
def query(
|
| 613 |
self,
|
| 614 |
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
|
|
|
| 899 |
|
| 900 |
return {"points": objects}
|
| 901 |
|
| 902 |
+
def _norm_size_logits(self, size_ret, B: int):
|
| 903 |
+
"""
|
| 904 |
+
Accepts any of:
|
| 905 |
+
• (w_logits, h_logits)
|
| 906 |
+
• Tensor (B,2,C) or (B,1,2,C) or (1,2,C) or (2,C) (B==1)
|
| 907 |
+
Returns (w_logits, h_logits) each shaped (B, C).
|
| 908 |
+
"""
|
| 909 |
+
if isinstance(size_ret, (tuple, list)):
|
| 910 |
+
w_logits, h_logits = size_ret
|
| 911 |
+
else:
|
| 912 |
+
t = size_ret
|
| 913 |
+
# squeeze all singleton dims except batch & vocab
|
| 914 |
+
while t.dim() > 3:
|
| 915 |
+
t = t.squeeze(1)
|
| 916 |
+
if t.dim() == 3: # (B,2,C)
|
| 917 |
+
w_logits, h_logits = t[:, 0, :], t[:, 1, :]
|
| 918 |
+
elif t.dim() == 2:
|
| 919 |
+
if t.size(0) == 2 and B == 1: # (2,C) with B==1
|
| 920 |
+
w_logits, h_logits = t[0].unsqueeze(0), t[1].unsqueeze(0)
|
| 921 |
+
else: # (B,2C) fallback
|
| 922 |
+
C2 = t.size(1); C = C2 // 2
|
| 923 |
+
w_logits, h_logits = t[:, :C], t[:, C:]
|
| 924 |
+
else:
|
| 925 |
+
raise RuntimeError(f"Unexpected decode_size shape {tuple(t.shape)}")
|
| 926 |
+
# final squeeze if needed
|
| 927 |
+
if w_logits.dim() == 3: w_logits = w_logits.squeeze(1)
|
| 928 |
+
if h_logits.dim() == 3: h_logits = h_logits.squeeze(1)
|
| 929 |
+
return w_logits.contiguous(), h_logits.contiguous()
|
| 930 |
+
|
| 931 |
|
|
|
|
| 932 |
def _load_encoded_image_batched(self, encoded_image, batch_size: int):
|
| 933 |
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
| 934 |
T = k.size(2)
|
|
|
|
| 940 |
b.kv_cache.k_cache[:, :, :T, :] = k.expand(batch_size, -1, -1, -1)
|
| 941 |
b.kv_cache.v_cache[:, :, :T, :] = v.expand(batch_size, -1, -1, -1)
|
| 942 |
|
| 943 |
+
|
| 944 |
+
def _prefill_prompt_batched(self, labels, pos: int, lora=None,
|
| 945 |
+
temperature: float = 0.0, top_p: float = 0.0):
|
| 946 |
tpl = self.config.tokenizer.templates["detect"]
|
| 947 |
if tpl is None:
|
| 948 |
+
raise NotImplementedError("Model does not support object detection.")
|
| 949 |
|
| 950 |
rows, lens = [], []
|
| 951 |
for lab in labels:
|
| 952 |
ids = tpl["prefix"] + self.tokenizer.encode(" " + lab).ids + tpl["suffix"]
|
| 953 |
t = torch.tensor(ids, device=self.device, dtype=torch.long)
|
| 954 |
rows.append(t); lens.append(t.numel())
|
| 955 |
+
B, T = len(rows), max(lens)
|
| 956 |
eos = self.config.tokenizer.eos_id
|
| 957 |
|
| 958 |
prompt_ids = torch.full((B, T), eos, device=self.device, dtype=torch.long)
|
| 959 |
for i, ids in enumerate(rows):
|
| 960 |
prompt_ids[i, : ids.numel()] = ids
|
| 961 |
|
| 962 |
+
prompt_emb = text_encoder(prompt_ids, self.text) # (B,T,C)
|
| 963 |
+
torch._dynamo.mark_dynamic(prompt_emb, 1) # allow variable T
|
| 964 |
|
| 965 |
+
base = self.attn_mask[:, :, pos:pos+T, :] # (1,1,T,K)
|
| 966 |
+
mask = base.expand(B, -1, -1, -1).contiguous() # (B,1,T,K)
|
|
|
|
| 967 |
|
|
|
|
| 968 |
pos_ids = torch.arange(pos, pos + T, device=self.device, dtype=torch.long) # (T,)
|
| 969 |
+
hidden_BTC = self._prefill(prompt_emb, mask, pos_ids, lora) # (B,T,C)
|
| 970 |
+
logits_BTV = lm_head(hidden_BTC, self.text) # (B,T,V)
|
| 971 |
|
| 972 |
+
idx = (torch.tensor(lens, device=self.device) - 1).clamp_min(0) # (B,)
|
| 973 |
last_hidden = hidden_BTC[torch.arange(B, device=self.device), idx][:, None, :] # (B,1,C)
|
| 974 |
last_logits = logits_BTV[torch.arange(B, device=self.device), idx] # (B,V)
|
| 975 |
|
| 976 |
if temperature == 0.0:
|
| 977 |
+
next_token = last_logits.argmax(dim=-1, keepdim=True) # (B,1)
|
| 978 |
else:
|
| 979 |
probs = torch.softmax(last_logits / temperature, dim=-1)
|
| 980 |
probs = self._apply_top_p(probs, top_p)
|
| 981 |
+
next_token = torch.multinomial(probs, num_samples=1) # (B,1)
|
| 982 |
|
| 983 |
+
# shared next-free position in cache (safe upper bound)
|
| 984 |
+
pos_end = int(pos + T)
|
| 985 |
+
return last_hidden, next_token, pos_end
|
| 986 |
+
|
| 987 |
|
| 988 |
|
| 989 |
|
| 990 |
def _generate_points_batched(
|
| 991 |
self,
|
| 992 |
hidden, # (B,1,C)
|
| 993 |
+
next_token, # (B,1) (unused in greedy)
|
| 994 |
pos, # int
|
| 995 |
include_size: bool = True,
|
| 996 |
max_objects: int = 50,
|
| 997 |
lora=None,
|
| 998 |
+
use_soft_argmax: bool = True, # reduces jitter
|
| 999 |
):
|
| 1000 |
B = hidden.size(0)
|
| 1001 |
device = self.device
|
|
|
|
| 1003 |
eos_id = self.config.tokenizer.eos_id
|
| 1004 |
max_ctx = self.config.text.max_context
|
| 1005 |
|
| 1006 |
+
# 4-D mask: (B, 1, q_len=1, kv_len)
|
| 1007 |
mask = torch.zeros(B, 1, 1, max_ctx, device=device, dtype=torch.bool)
|
| 1008 |
+
if int(pos) > 0:
|
| 1009 |
+
mask[:, :, :, :int(pos)] = True
|
| 1010 |
+
pos_ids = torch.full((B, 1), int(pos), device=device, dtype=torch.long)
|
| 1011 |
|
| 1012 |
+
# helper: (B, bins) -> (B,) in [0,1]
|
| 1013 |
+
def _argmax01(logits):
|
| 1014 |
+
if use_soft_argmax:
|
| 1015 |
+
probs = torch.softmax(logits, dim=-1)
|
| 1016 |
+
bins = torch.arange(probs.size(-1), device=logits.device, dtype=torch.float32)
|
| 1017 |
+
return (probs * bins).sum(dim=-1) / float(probs.size(-1) - 1)
|
| 1018 |
+
idx = logits.argmax(dim=-1).to(torch.float32)
|
| 1019 |
+
return idx / float(logits.size(-1) - 1)
|
| 1020 |
|
| 1021 |
alive = torch.ones(B, dtype=torch.bool, device=device)
|
| 1022 |
counts = torch.zeros(B, dtype=torch.int32, device=device)
|
| 1023 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1024 |
with torch.inference_mode():
|
| 1025 |
while alive.any() and (counts < max_objects).any():
|
| 1026 |
+
# ---- x
|
| 1027 |
+
x_logits = decode_coordinate(hidden, self.region) # (B,1,1024) or (B,1024)
|
| 1028 |
+
if x_logits.dim() == 3: x_logits = x_logits.squeeze(1)
|
| 1029 |
+
x_center = _argmax01(x_logits) # (B,)
|
| 1030 |
+
x_emb = encode_coordinate(x_center.to(dtype=x_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1)
|
| 1031 |
|
| 1032 |
+
mask[alive, :, :, pos_ids[0,0]] = True
|
| 1033 |
+
logits, hidden = self._decode_one_tok(x_emb, mask, pos_ids, lora)
|
| 1034 |
+
pos_ids[alive, 0] += 1
|
|
|
|
| 1035 |
|
| 1036 |
+
# ---- y
|
| 1037 |
y_logits = decode_coordinate(hidden, self.region)
|
| 1038 |
+
if y_logits.dim() == 3: y_logits = y_logits.squeeze(1)
|
| 1039 |
+
y_center = _argmax01(y_logits)
|
| 1040 |
+
y_emb = encode_coordinate(y_center.to(dtype=y_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1)
|
| 1041 |
|
| 1042 |
+
mask[alive, :, :, pos_ids[0,0]] = True
|
| 1043 |
+
logits, hidden = self._decode_one_tok(y_emb, mask, pos_ids, lora)
|
| 1044 |
+
pos_ids[alive, 0] += 1
|
|
|
|
| 1045 |
|
| 1046 |
if include_size:
|
|
|
|
| 1047 |
size_ret = decode_size(hidden, self.region)
|
| 1048 |
+
w_logits, h_logits = self._norm_size_logits(size_ret, B)
|
| 1049 |
+
|
| 1050 |
+
if use_soft_argmax:
|
| 1051 |
+
bins = torch.arange(w_logits.size(-1), device=device, dtype=torch.float32)
|
| 1052 |
+
w_bin = (torch.softmax(w_logits, dim=-1) * bins).sum(dim=-1)
|
| 1053 |
+
h_bin = (torch.softmax(h_logits, dim=-1) * bins).sum(dim=-1)
|
| 1054 |
else:
|
| 1055 |
+
w_bin = w_logits.argmax(dim=-1).to(torch.float32)
|
| 1056 |
+
h_bin = h_logits.argmax(dim=-1).to(torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1057 |
|
| 1058 |
+
# inverse log scale used by md2
|
|
|
|
|
|
|
| 1059 |
w = torch.pow(2.0, (w_bin / 1023.0) * 10.0 - 10.0)
|
| 1060 |
h = torch.pow(2.0, (h_bin / 1023.0) * 10.0 - 10.0)
|
| 1061 |
|
| 1062 |
+
size_emb = encode_size(torch.stack([w, h], dim=1).to(dtype=w_logits.dtype), self.region).unsqueeze(1)
|
| 1063 |
|
| 1064 |
+
# write boxes only for alive rows
|
| 1065 |
for i in range(B):
|
| 1066 |
+
if not alive[i]: continue
|
|
|
|
| 1067 |
xl = (x_center[i] - w[i] / 2).item()
|
| 1068 |
xr = (x_center[i] + w[i] / 2).item()
|
| 1069 |
yt = (y_center[i] - h[i] / 2).item()
|
|
|
|
| 1075 |
"y_max": max(0.0, min(1.0, yb)),
|
| 1076 |
})
|
| 1077 |
|
| 1078 |
+
mask[alive, :, :, pos_ids[0,0]] = True
|
| 1079 |
+
logits, hidden = self._decode_one_tok(size_emb, mask, pos_ids, lora)
|
| 1080 |
+
pos_ids[alive, 0] += 1
|
| 1081 |
+
next_tok = logits.argmax(dim=-1).squeeze(-1) # (B,)
|
|
|
|
| 1082 |
else:
|
| 1083 |
for i in range(B):
|
| 1084 |
if alive[i]:
|
| 1085 |
out[i].append({"x": x_center[i].item(), "y": y_center[i].item()})
|
| 1086 |
+
mask[alive, :, :, pos_ids[0,0]] = True
|
| 1087 |
+
logits, hidden = self._decode_one_tok(y_emb, mask, pos_ids, lora)
|
| 1088 |
+
pos_ids[alive, 0] += 1
|
|
|
|
| 1089 |
next_tok = logits.argmax(dim=-1).squeeze(-1)
|
| 1090 |
|
| 1091 |
finished_now = (next_tok == eos_id) | (counts >= max_objects - 1)
|
|
|
|
| 1094 |
|
| 1095 |
return out
|
| 1096 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1097 |
def detect_multi(self, image, objects, settings=None):
|
| 1098 |
if self.config.tokenizer.templates["detect"] is None:
|
| 1099 |
raise NotImplementedError("Model does not support object detection.")
|
|
|
|
| 1122 |
d["label"] = lab
|
| 1123 |
res[lab] = lst
|
| 1124 |
|
| 1125 |
+
# restore B=1 so the next encode_image() starts clean
|
| 1126 |
self._reset_kv_caches(1)
|
| 1127 |
return {"objects": res}
|
| 1128 |
|
|
|
|
| 1130 |
|
| 1131 |
|
| 1132 |
|
| 1133 |
+
|
| 1134 |
def _detect_gaze(
|
| 1135 |
self,
|
| 1136 |
image: EncodedImage,
|