KPLabs's picture
Create train.py
ed46d2f verified
from utils import calculate_metrics, get_classes, CLASSES
from sklearn.ensemble import RandomForestRegressor
from sklearn.utils import shuffle
from typing import List, Tuple
from sklearn import metrics
from tqdm import tqdm
import pandas as pd
import numpy as np
import joblib
import pywt
import fire
import json
import os
TRAIN_SIZE = 1732
TEST_SIZE = 1154
TRAIN_DIR = "train_data_simulated/"
TEST_DIR = "test_data_simulated/"
def load_data() -> Tuple[List, pd.DataFrame, List, pd.DataFrame]:
X_train = [os.path.join(TRAIN_DIR, f"{i}.npz") for i in range(TRAIN_SIZE)]
X_test = [os.path.join(TEST_DIR, f"{i}.npz") for i in range(TEST_SIZE)]
y_train = pd.read_csv("train_gt.csv")
y_test = pd.read_csv("test_gt.csv")
return X_train, y_train, X_test, y_test
class SpectralCurveFiltering:
def __init__(self, merge_function=np.mean):
self.merge_function = merge_function
def __call__(self, sample: np.ndarray) -> np.ndarray:
return self.merge_function(sample, axis=(1, 2))
class BaselineRegressor:
def __init__(self):
self.mean = 0
def fit(self, X_train: np.ndarray, y_train: np.ndarray):
self.mean = np.mean(y_train, axis=0)
self.classes_count = y_train.shape[1]
return self
def predict(self, X_test: np.ndarray) -> np.ndarray:
return np.full((len(X_test), self.classes_count), self.mean)
def preprocess(samples_lst: List[str], features: List[str]) -> Tuple:
def _shape_pad(data: np.ndarray) -> np.ndarray:
"""
This sub-function makes padding to have square fields sizes.
Not mandatory but eliminates the risk of calculation error
in singular value decomposition.
Padding by warping also improves the performance slightly.
"""
max_edge = np.max(data.shape[1:])
shape = (max_edge, max_edge)
padded = np.pad(
data,
((0, 0), (0, (shape[0] - data.shape[1])), (0, (shape[1] - data.shape[2]))),
"wrap",
)
return padded
filtering = SpectralCurveFiltering()
w1 = pywt.Wavelet("sym3")
w2 = pywt.Wavelet("dmey")
all_feature_names = []
for sample_index, sample_path in tqdm(
enumerate(samples_lst), total=len(samples_lst)
):
with np.load(sample_path) as npz:
data = np.ma.MaskedArray(**npz)
data = _shape_pad(data)
# Get the spatial features:
s = np.linalg.svd(data, full_matrices=False, compute_uv=False)
s0 = s[:, 0]
s1 = s[:, 1]
s2 = s[:, 2]
s3 = s[:, 3]
s4 = s[:, 4]
dXds1 = s0 / (s1 + np.finfo(float).eps)
ffts = np.fft.fft(s0)
reals = np.real(ffts)
imags = np.imag(ffts)
# Get the specific spectral features:
data = filtering(data)
cA0, cD0 = pywt.dwt(data, wavelet=w2, mode="constant")
cAx, cDx = pywt.dwt(cA0[12:92], wavelet=w2, mode="constant")
cAy, cDy = pywt.dwt(cAx[15:55], wavelet=w2, mode="constant")
cAz, cDz = pywt.dwt(cAy[15:35], wavelet=w2, mode="constant")
cAw2 = np.concatenate((cA0[12:92], cAx[15:55], cAy[15:35], cAz[15:25]), -1)
cDw2 = np.concatenate((cD0[12:92], cDx[15:55], cDy[15:35], cDz[15:25]), -1)
cA0, cD0 = pywt.dwt(data, wavelet=w1, mode="constant")
cAx, cDx = pywt.dwt(cA0[1:-1], wavelet=w1, mode="constant")
cAy, cDy = pywt.dwt(cAx[1:-1], wavelet=w1, mode="constant")
cAz, cDz = pywt.dwt(cAy[1:-1], wavelet=w1, mode="constant")
cAw1 = np.concatenate((cA0, cAx, cAy, cAz), -1)
cDw1 = np.concatenate((cD0, cDx, cDy, cDz), -1)
dXdl = np.gradient(data, axis=0)
d2Xdl2 = np.gradient(dXdl, axis=0)
d3Xdl3 = np.gradient(d2Xdl2, axis=0)
fft = np.fft.fft(data)
real = np.real(fft)
imag = np.imag(fft)
features_to_select = {
"spatial": (dXds1, s0, s1, s2, s3, s4, reals, imags),
"fft": (real, imag),
"gradient": (dXdl, d2Xdl2, d3Xdl3),
"mean": (data,),
"dwt": (cAw1, cAw2),
}
# The best Feature combination for Random Forest based regression:
sample_features = []
sample_feature_names = []
for feature_name in features:
sample_features.extend(features_to_select[feature_name])
sample_feature_names.extend(
[feature_name]
* len(np.concatenate(features_to_select[feature_name]))
)
sample_features = np.concatenate(sample_features, -1)
samples_lst[sample_index] = sample_features
all_feature_names.append(sample_feature_names)
return np.vstack(samples_lst), all_feature_names
def runner(features: List[str] = "spatial,fft,dwt,gradient,mean".split(",")):
X_train, y_train, X_test, y_test = load_data()
X_train, train_feature_names = preprocess(X_train, features)
X_test, test_feature_names = preprocess(X_test, features)
X_train, y_train = shuffle(X_train, y_train, random_state=2023)
model = RandomForestRegressor(random_state=2023)
print(f"Training model on {X_train.shape} features...")
model = model.fit(X_train, y_train[CLASSES].values)
joblib.dump(model, f"RF_model_{'-'.join(features)}.joblib")
submission_df = pd.DataFrame(data=model.predict(X_test), columns=CLASSES)
submission_df.to_csv(",".join(features) + ".csv", index_label="sample_index")
baseline_reg = BaselineRegressor()
baseline_reg = baseline_reg.fit(X_train, y_train[CLASSES].values)
baselines_mse = np.mean(
(y_test[CLASSES].values - baseline_reg.predict(X_test)) ** 2, axis=0
)
mse = np.mean((y_test[CLASSES].values - submission_df[CLASSES].values) ** 2, axis=0)
scores = mse / baselines_mse
final_score = np.mean(scores)
r2 = metrics.r2_score(
y_true=y_test[CLASSES].values,
y_pred=submission_df[CLASSES].values,
multioutput="raw_values",
)
mse = metrics.mean_squared_error(
y_true=y_test[CLASSES].values,
y_pred=submission_df[CLASSES].values,
multioutput="raw_values",
)
mae = metrics.mean_absolute_error(
y_true=y_test[CLASSES].values,
y_pred=submission_df[CLASSES].values,
multioutput="raw_values",
)
all_metrics = calculate_metrics(
y_pred=get_classes(submission_df[CLASSES]),
y_true=get_classes(y_test[CLASSES]),
)
mse = {k + "_mse": v for k, v in zip(["P", "K", "Mg", "pH"], mse.tolist())}
r2 = {k + "_r2": v for k, v in zip(["P", "K", "Mg", "pH"], r2.tolist())}
mae = {k + "_mae": v for k, v in zip(["P", "K", "Mg", "pH"], mae.tolist())}
all_metrics["custom"] = final_score
all_metrics = pd.DataFrame.from_dict({**all_metrics, **r2, **mse, **mae})
all_metrics.to_csv(f"all_metrics.csv", index=False)
with open("all_metrics.json", "w", encoding="utf-8") as f:
json.dump(all_metrics.to_dict(), f, ensure_ascii=True, indent=4)
print(f"Custom score: {final_score}")
return final_score
if __name__ == "__main__":
fire.Fire(runner)
model = joblib.load(
f"RF_model_{'-'.join('spatial,fft,dwt,gradient,mean'.split(','))}.joblib"
)
import sklearn
assert isinstance(model, sklearn.ensemble._forest.RandomForestRegressor)