SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LamaDiab/MiniLM-V23Data-256ConstantBATCH-SemanticEngine")
# Run inference
sentences = [
'y earrings',
'circles earrings',
'slate short-sleeved t-shirt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9396, -0.0116],
# [ 0.9396, 1.0000, 0.0533],
# [-0.0116, 0.0533, 1.0000]])
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9619 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 713,598 training samples
- Columns:
anchor,positive, anditemCategory - Approximate statistics based on the first 1000 samples:
anchor positive itemCategory type string string string details - min: 3 tokens
- mean: 10.85 tokens
- max: 42 tokens
- min: 3 tokens
- mean: 4.49 tokens
- max: 100 tokens
- min: 3 tokens
- mean: 3.89 tokens
- max: 9 tokens
- Samples:
anchor positive itemCategory almond bark chocolatesweetsweetbeige wide leg cotton fleece pantstrouserstrousersspice guru paprika powderpantrypantry - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 9,509 evaluation samples
- Columns:
anchor,positive,negative, anditemCategory - Approximate statistics based on the first 1000 samples:
anchor positive negative itemCategory type string string string string details - min: 3 tokens
- mean: 9.63 tokens
- max: 43 tokens
- min: 3 tokens
- mean: 6.43 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 9.31 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 3.88 tokens
- max: 10 tokens
- Samples:
anchor positive negative itemCategory pilot mechanical pencil progrex h-127 - 0.7 mmmechanical pencildaler rowney smooth sketchbook, a5, 130 gsm, 30 sheets, 403010500, frenchpencilsuperior drawing marker -pen - set of 12 colors - 2 nibsuperior drawing markerfc albrecht dรผrer pencil no. 124markerfirst person singular author: haruki murakamiharuki murakami booksarabliterature and fiction - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 2e-05weight_decay: 0.001num_train_epochs: 5warmup_ratio: 0.1fp16: Truedataloader_num_workers: 1dataloader_prefetch_factor: 2dataloader_persistent_workers: Truepush_to_hub: Truehub_model_id: LamaDiab/MiniLM-V23Data-256ConstantBATCH-SemanticEnginehub_strategy: all_checkpoints
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.001adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 1dataloader_prefetch_factor: 2past_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Trueskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: LamaDiab/MiniLM-V23Data-256ConstantBATCH-SemanticEnginehub_strategy: all_checkpointshub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|---|---|---|---|---|
| 0.0004 | 1 | 4.2699 | - | - |
| 0.3587 | 1000 | 3.0799 | 0.5312 | 0.9464 |
| 0.7174 | 2000 | 1.6967 | 0.4940 | 0.9519 |
| 1.0760 | 3000 | 1.2766 | 0.4655 | 0.9552 |
| 1.4344 | 4000 | 1.3959 | 0.4652 | 0.9606 |
| 1.7928 | 5000 | 1.2793 | 0.4658 | 0.9588 |
| 2.1513 | 6000 | 1.1814 | 0.4634 | 0.9609 |
| 2.5097 | 7000 | 1.1045 | 0.4578 | 0.9618 |
| 2.8681 | 8000 | 1.0585 | 0.4550 | 0.9616 |
| 3.2265 | 9000 | 0.9791 | 0.4574 | 0.9625 |
| 3.5849 | 10000 | 0.9813 | 0.4535 | 0.9622 |
| 3.9434 | 11000 | 0.9417 | 0.4583 | 0.9606 |
| 4.3018 | 12000 | 0.9024 | 0.4563 | 0.9615 |
| 4.6602 | 13000 | 0.9194 | 0.4550 | 0.9619 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 56