YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
embedding_layer = embedding_layer.to(DEVICE)
transformer_encoder = transformer_encoder.to(DEVICE)
pos_encoding = pos_encoding.to(DEVICE)
output_layer = output_layer.to(DEVICE)
# -----------------------------
# Оптимизатор
# -----------------------------
optimizer = torch.optim.Adam(
list(embedding_layer.parameters()) +
list(transformer_encoder.parameters()) +
list(pos_encoding.parameters()) +
list(output_layer.parameters()),
lr=1e-4
)
# -----------------------------
# Загружаем чекпоинт
# -----------------------------
start_epoch = 0
if os.path.exists(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH, map_location=DEVICE)
embedding_layer.load_state_dict(checkpoint['embedding_state'])
pos_encoding.load_state_dict(checkpoint['pos_encoding_state'])
transformer_encoder.load_state_dict(checkpoint['transformer_state'])
output_layer.load_state_dict(checkpoint['output_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
start_epoch = checkpoint['epoch'] + 1
print(f"Модель загружена, продолжаем с эпохи {start_epoch}")
else:
print("Чекпоинт не найден, начинаем обучение с нуля")
# -----------------------------
# Обучение с отладкой
# -----------------------------
for epoch in range(start_epoch, start_epoch + EPOCHS):
running_loss = 0.0
print(f"\n=== Эпоха {epoch + 1}/{start_epoch + EPOCHS} ===")
for chunk_idx, (input_ids_chunk, attention_mask_chunk, target_ids_chunk) in enumerate(
chunked_tokenizer(data, tokenizer, max_len=MAX_LEN, chunk_size=CHUNK_SIZE)
):
print(f"\n--- Чанк {chunk_idx + 1} / {len(data) // CHUNK_SIZE + 1} ---")
dataset = TensorDataset(input_ids_chunk, attention_mask_chunk, target_ids_chunk)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
for batch_idx, batch in enumerate(dataloader):
batch_input_ids, batch_attention_mask, batch_target_ids = [x.to(DEVICE) for x in batch]
padding_mask = (batch_attention_mask == 0)
optimizer.zero_grad()
# Эмбеддинги
embedded = embedding_layer(batch_input_ids)
print(f"[DEBUG] embedded shape: {embedded.shape}") # batch, seq_len, embed_dim
# Позиционное кодирование
embedded = embedded.transpose(0, 1) # seq_len, batch, embed_dim
embedded = pos_encoding(embedded)
print(f"[DEBUG] embedded + pos_encoding shape: {embedded.shape}")
# Трансформер
transformer_output = transformer_encoder(embedded, src_key_padding_mask=padding_mask)
transformer_output = transformer_output.transpose(0, 1) # batch, seq_len, embed_dim
print(f"[DEBUG] transformer_output shape: {transformer_output.shape}")
# Память выхода трансформера (примерно)
batch_size, seq_len, emb_dim = transformer_output.shape
mem_MB = batch_size * seq_len * emb_dim * 4 / 1024 ** 2
print(f"[DEBUG] Output memory approx: {mem_MB:.2f} MB")
# Линейный слой
logits = output_layer(transformer_output)
print(f"[DEBUG] logits shape: {logits.shape}")
# Потери
loss = criterion(logits.view(-1, vocab_size), batch_target_ids.view(-1))
loss_history.append(loss.item())
print(f"[DEBUG] batch {batch_idx + 1} loss: {loss.item():.6f}")
# Backprop
loss.backward()
optimizer.step()
running_loss += loss.item() * batch_input_ids.size(0)
# Демонстрация предсказаний
pred_tokens = torch.argmax(logits, dim=-1)
sample_input = tokenizer.decode(batch_input_ids[0], skip_special_tokens=True)
sample_pred = tokenizer.decode(pred_tokens[0], skip_special_tokens=True)
sample_target = tokenizer.decode(batch_target_ids[0], skip_special_tokens=True)
print(f"[DEBUG] Sample input: {sample_input[:50]}...")
print(f"[DEBUG] Sample target: {sample_target[:50]}...")
print(f"[DEBUG] Sample pred: {sample_pred[:50]}...")
# Очистка памяти
del batch_input_ids, batch_attention_mask, batch_target_ids, embedded, transformer_output, logits
torch.cuda.empty_cache()
avg_loss = running_loss / len(data)
print(f"\n=== Эпоха {epoch + 1} завершена — Avg Loss: {avg_loss:.6f} ===\n")
# -----------------------------
# Сохраняем чекпоинт
# -----------------------------
torch.save({
'embedding_state': embedding_layer.state_dict(),
'pos_encoding_state': pos_encoding.state_dict(),
'transformer_state': transformer_encoder.state_dict(),
'output_state': output_layer.state_dict(),
'optimizer_state': optimizer.state_dict(),
'epoch': epoch
}, CHECKPOINT_PATH)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support