e5-base-v2-sentiment-twitter

This model is a fine-tuned version of intfloat/e5-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6678
  • Accuracy: 0.7186
  • F1: 0.7186
  • Precision: 0.7219
  • Recall: 0.7186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6842 0.1754 500 0.6403 0.7195 0.7209 0.7232 0.7195
0.6395 0.3508 1000 0.6110 0.7215 0.7254 0.7374 0.7215
0.6188 0.5261 1500 0.6028 0.733 0.7360 0.7442 0.733
0.6291 0.7015 2000 0.5912 0.738 0.7338 0.7403 0.738
0.6005 0.8769 2500 0.5705 0.752 0.7534 0.7572 0.752
0.3942 1.0523 3000 0.6278 0.747 0.7469 0.7525 0.747
0.4603 1.2276 3500 0.6185 0.75 0.7509 0.7536 0.75
0.4579 1.4030 4000 0.6348 0.751 0.7491 0.7526 0.751
0.4264 1.5784 4500 0.6129 0.757 0.7573 0.7579 0.757
0.4196 1.7538 5000 0.6196 0.7585 0.7582 0.7582 0.7585
0.4193 1.9291 5500 0.6159 0.7625 0.7611 0.7615 0.7625

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Muhammad7777/e5-base-v2-sentiment-twitter

Finetuned
(37)
this model

Evaluation results