Octen-Embedding-0.6B
Octen-Embedding-0.6B is a text embedding model designed for semantic search and retrieval tasks. This model is fine-tuned from Qwen/Qwen3-Embedding-0.6B and supports multiple languages, providing high-quality embeddings for various applications.
Key Highlights
๐ฅ RTEB Leaderboard Champion (as of January 12, 2026)
- Octen-Embedding-8B ranks #1 on the RTEB Leaderboard with Mean (Task) score of 0.8045
- Excellent performance on both Public (0.7953) and Private (0.8157) datasets
- Demonstrates true generalization capability without overfitting to public benchmarks
Industry-Oriented Vertical Domain Expertise
- Legal: Legal document retrieval
- Finance: Financial reports, Q&A, and personal finance content
- Healthcare: Medical Q&A, clinical dialogues, and health consultations
- Code: Programming problems, code search, and SQL queries
Ultra-Long Context Support
- Supports up to 32,768 tokens context length
- Suitable for processing long documents in legal, healthcare, and other domains
- High-dimensional embedding space for rich semantic representation
Multilingual Capability
- Supports 100+ languages
- Includes various programming languages
- Strong multilingual, cross-lingual, and code retrieval capabilities
Open Source Model List
| Model Type | Model | Size | Max Tokens | Embedding Dimensions | HuggingFace Link |
|---|---|---|---|---|---|
| Text Embedding | Octen-Embedding-0.6B | 0.6B | 32,768 | 1024 | โ Available |
| Text Embedding | Octen-Embedding-4B | 4.0B | 32,768 | 2560 | โ Available |
| Text Embedding | Octen-Embedding-8B | 7.6B | 32,768 | 4096 | โ Available |
Model Family Design:
- Octen-Embedding-8B: Best performance, RTEB #1, for high-precision retrieval
- Octen-Embedding-4B: Best in 4B category, balanced performance and efficiency
- Octen-Embedding-0.6B: Lightweight deployment, suitable for edge devices and resource-constrained environments
Experimental Results
RTEB Leaderboard (Overall Performance)
| Model | Embedding Dim | Max Tokens | Mean (Public) | Mean (Private) | Mean (Task) |
|---|---|---|---|---|---|
| Octen-Embedding-8B | 4096 | 32768 | 0.7953 | 0.8157 | 0.8045 |
| voyage-3-large | 1024 | 32000 | 0.7434 | 0.8277 | 0.7812 |
| gemini-embedding-001 | 3072 | 2048 | 0.7218 | 0.8075 | 0.7602 |
| Octen-Embedding-4B | 2560 | 32768 | 0.7747 | 0.7942 | 0.7834 |
| MoD-Embedding | 2560 | 32768 | 0.7642 | 0.7900 | 0.7758 |
| Qwen3-Embedding-8B | 4096 | 32768 | 0.7310 | 0.7838 | 0.7547 |
| Octen-Embedding-0.6B | 1024 | 32768 | 0.7241 | - | - |
| voyage-3.5 | 1024 | 32000 | 0.7139 | 0.8102 | 0.7571 |
| Cohere-embed-v4.0 | 1536 | 128000 | 0.6534 | 0.7943 | 0.7166 |
| jina-embeddings-v4 | 2048 | 32768 | 0.6652 | 0.7664 | 0.7105 |
| GritLM-7B | 4096 | 32768 | 0.6187 | 0.7385 | 0.6724 |
| text-embedding-3-large | 3072 | 8191 | 0.6110 | 0.7130 | 0.6567 |
| e5-mistral-7b-instruct | 4096 | 32768 | 0.5090 | 0.7091 | 0.5987 |
| NV-Embed-v2 | 4096 | 32768 | 0.5805 | 0.6691 | 0.6203 |
| snowflake-arctic-embed-l-v2.0 | 1024 | 8192 | 0.5395 | 0.7079 | 0.6150 |
| multilingual-e5-large-instruct | 1024 | 514 | 0.5478 | 0.6859 | 0.6097 |
| gte-multilingual-base | 768 | 8192 | 0.5291 | 0.6697 | 0.5921 |
| text-embedding-3-small | 1536 | 8191 | 0.5260 | 0.6630 | 0.5874 |
| bge-m3 | 1024 | 8194 | 0.5216 | 0.6726 | 0.5893 |
| Qwen3-Embedding-4B | 2560 | 32768 | - | 0.7711 | - |
| Qwen3-Embedding-0.6B | 1024 | 32768 | - | 0.7117 | - |
Model Details
- Base Model: Qwen/Qwen3-Embedding-0.6B
- Model Size: 0.6B parameters
- Max Sequence Length: 32,768 tokens
- Embedding Dimension: 1024
- Languages: English, Chinese, and multilingual support
- Training Method: LoRA fine-tuning
Usage
Using Sentence Transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Octen/Octen-Embedding-0.6B")
# Encode sentences
sentences = [
"This is an example sentence",
"Each sentence is converted to a vector"
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Output: (2, 1024)
# Compute similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Using Transformers
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("Octen/Octen-Embedding-0.6B", padding_side="left")
model = AutoModel.from_pretrained("Octen/Octen-Embedding-0.6B")
model.eval()
def encode(texts):
inputs = tokenizer(texts, padding=True, truncation=True,
max_length=8192, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Use last token embedding
embeddings = outputs.last_hidden_state[:, -1, :]
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Example usage
texts = ["Hello world", "ไฝ ๅฅฝไธ็"]
embeddings = encode(texts)
similarity = torch.matmul(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Recommended Use Cases
- Semantic search and information retrieval
- Document similarity and clustering
- Question answering
- Cross-lingual retrieval
- Text classification with embeddings
Limitations
- Performance may vary across different domains and languages
- Very long documents (>32K tokens) require truncation
- Optimized for retrieval tasks, not for text generation
License
This model is licensed under the Apache License 2.0.
This model is derived from Qwen/Qwen3-Embedding-0.6B, which is also licensed under Apache License 2.0.
Paper
For more details, please refer to our blog post: Octen Series: Optimizing Embedding Models to #1 on RTEB Leaderboard
Citation
If you find our work helpful, please consider citing:
@misc{octen2025rteb,
title={Octen Series: Optimizing Embedding Models to #1 on RTEB Leaderboard},
author={Octen Team},
year={2025},
url={https://octen-team.github.io/octen_blog/posts/octen-rteb-first-place/}
}
- Downloads last month
- 206