Improve model card with InternVL 2.5 abstract and project page link

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +81 -27
README.md CHANGED
@@ -1,18 +1,18 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternVL3_5-38B-MPO
7
- base_model_relation: finetune
8
  datasets:
9
- - OpenGVLab/MMPR-v1.2
10
- - OpenGVLab/MMPR-Tiny
11
  language:
12
- - multilingual
 
 
 
13
  tags:
14
- - internvl
15
- - custom_code
 
16
  ---
17
 
18
  # InternVL3_5-38B
@@ -25,15 +25,12 @@ tags:
25
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
  </div>
27
 
28
- ## Introduction
29
-
30
- We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
 
32
- ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
 
34
- > Hatched bars represent closed-source commercial models. We report average scores on a set of multimodal general, reasoning, text, and agentic benchmarks: MMBench v1.1 (en), MMStar,BLINK, HallusionBench, AI2D, OCRBench, MMVet, MME-RealWorld (en), MVBench, VideoMME, MMMU, MathVista, MathVision, MathVerse, DynaMath, WeMath, LogicVista, MATH500, AIME24, AIME25, GPQA, MMLU-Pro, GAOKAO, IFEval, SGP-Bench, VSI-Bench, ERQA, SpaCE-10, and OmniSpatial.
35
-
36
- See [quick start](#quick-start) for how to use our model.
37
 
38
  ## InternVL3.5 Family
39
 
@@ -137,11 +134,11 @@ The Dynamic High Resolution strategy introduced in InternVL1.5 is also retained
137
 
138
 
139
  `InternVL3.5-Flash`:
140
- Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of efficient variants friendly suitable for resource-constrained scenarios.
141
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
- Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
 
146
 
147
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
@@ -156,8 +153,8 @@ $$
156
  \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right),
157
  $$
158
 
159
- where \\(x_i\\) is the predicted token and prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either text tokens or image tokens. Notably, for conversation samples, only response tokens are included for the calculation of the loss.
160
- Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss as follows:
161
 
162
  $$
163
  \mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}},
@@ -167,8 +164,8 @@ where \\(N\\) denotes the number of tokens in the training sample on which the l
167
 
168
  ### Supervised Fine-Tuning
169
 
170
- During the SFT phase, we adopt the same objective as in the pre-training stage and use the square-root averaging strategy to calculate the final loss. In this stage, the context window is set to 32K tokens to adapt long-context information.
171
- Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality and diverse training data derived from three sources:
172
 
173
  (1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of vision–language tasks.
174
 
@@ -180,7 +177,7 @@ Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality
180
 
181
  Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner.
182
  Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage.
183
- Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself. Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost.
184
 
185
 
186
 
@@ -233,7 +230,7 @@ $$
233
  \Bigg],
234
  $$
235
 
236
- where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
237
 
238
 
239
  `Router training`:
@@ -278,7 +275,7 @@ This approach improves reasoning breadth.
278
 
279
  ### Decoupled Vision-Language Deployment
280
 
281
- In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state. In contrast, the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency.
282
  When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images.
283
 
284
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg)
@@ -494,7 +491,9 @@ image_urls=[
494
 
495
  images = [load_image(img_url) for img_url in image_urls]
496
  # Numbering images improves multi-image conversations
497
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
498
  print(response.text)
499
  ```
500
 
@@ -596,4 +595,59 @@ If you find this project useful in your research, please consider citing:
596
  journal={arXiv preprint arXiv:2508.18265},
597
  year={2025}
598
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599
  ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL3_5-38B-MPO
 
4
  datasets:
5
+ - OpenGVLab/MMPR-v1.2
6
+ - OpenGVLab/MMPR-Tiny
7
  language:
8
+ - multilingual
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: image-text-to-text
12
  tags:
13
+ - internvl
14
+ - custom_code
15
+ base_model_relation: finetune
16
  ---
17
 
18
  # InternVL3_5-38B
 
25
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
  </div>
27
 
28
+ ## Abstract
 
 
29
 
30
+ We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see this https URL
31
 
32
+ ## Project Page
33
+ Find an interactive demo and more information at our Hugging Face Space: [https://huggingface.co/spaces/OpenGVLab/InternVL](https://huggingface.co/spaces/OpenGVLab/InternVL)
 
34
 
35
  ## InternVL3.5 Family
36
 
 
134
 
135
 
136
  `InternVL3.5-Flash`:
137
+ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of efficient variants friendly suitable for resource-constrained scenarios.
138
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
139
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
140
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
141
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50% while maintaining nearly 100% of the performance of InternVL3.5.
142
 
143
 
144
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
 
153
  \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right),
154
  $$
155
 
156
+ where \\(x_i\\) is the predicted token and prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either text tokens or image tokens. Notably, for conversation samples, only response tokens are included for the calculation of the loss.
157
+ Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss as follows:
158
 
159
  $$
160
  \mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}},
 
164
 
165
  ### Supervised Fine-Tuning
166
 
167
+ During the SFT phase, we adopt the same objective as in the pre-training stage and use the square-root averaging strategy to calculate the final loss. In this stage, the context window is set to 32K tokens to adapt long-context information.
168
+ Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality and diverse training data derived from three sources:
169
 
170
  (1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of vision–language tasks.
171
 
 
177
 
178
  Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner.
179
  Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage.
180
+ Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself. Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost.
181
 
182
 
183
 
 
230
  \Bigg],
231
  $$
232
 
233
+ where \\(\mathrm{KL}\\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
234
 
235
 
236
  `Router training`:
 
275
 
276
  ### Decoupled Vision-Language Deployment
277
 
278
+ In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state. In contrast, the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency.
279
  When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images.
280
 
281
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg)
 
491
 
492
  images = [load_image(img_url) for img_url in image_urls]
493
  # Numbering images improves multi-image conversations
494
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
495
+ Image-2: {IMAGE_TOKEN}
496
+ describe these two images', images))
497
  print(response.text)
498
  ```
499
 
 
595
  journal={arXiv preprint arXiv:2508.18265},
596
  year={2025}
597
  }
598
+ @article{zhu2025internvl3,
599
+ title={Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models},
600
+ author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Tian, Hao and Duan, Yuchen and Su, Weijie and Shao, Jie and others},
601
+ journal={arXiv preprint arXiv:2504.10479},
602
+ year={2025}
603
+ }
604
+ @article{chen2024expanding,
605
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
606
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
607
+ journal={arXiv preprint arXiv:2412.05271},
608
+ year={2024}
609
+ }
610
+ @article{wang2024mpo,
611
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
612
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
613
+ journal={arXiv preprint arXiv:2411.10442},
614
+ year={2024}
615
+ }
616
+ @article{gao2024mini,
617
+ title={Mini-InternVL: a flexible-transfer pocket multi-modal model with 5% parameters and 90% performance},
618
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
619
+ journal={Visual Intelligence},
620
+ volume={2},
621
+ number={1},
622
+ pages={1--17},
623
+ year={2024},
624
+ publisher={Springer}
625
+ }
626
+ @article{chen2024far,
627
+ title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
628
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
629
+ journal={Science China Information Sciences},
630
+ volume={67},
631
+ number={12},
632
+ pages={220101},
633
+ year={2024},
634
+ publisher={Springer}
635
+ }
636
+ @inproceedings{chen2024internvl,
637
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
638
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
639
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
640
+ pages={24185--24198},
641
+ year={2024}
642
+ }
643
  ```
644
+
645
+ ## Acknowledgement
646
+
647
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
648
+
649
+ ______________________________________________________________________
650
+
651
+ Scan the following QR Code, join our WeChat group.
652
+
653
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>