|
|
import math |
|
|
from typing import Optional, Union |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.image_utils import ChannelDimension, PILImageResampling, SizeDict, get_image_size |
|
|
from transformers.processing_utils import Unpack, VideosKwargs |
|
|
from transformers.utils import TensorType, add_start_docstrings, logging |
|
|
from transformers.video_processing_utils import BASE_VIDEO_PROCESSOR_DOCSTRING, BaseVideoProcessor |
|
|
from transformers.video_utils import VideoMetadata, group_videos_by_shape, reorder_videos |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def smart_resize( |
|
|
num_frames: int, |
|
|
height: int, |
|
|
width: int, |
|
|
temporal_factor: int = 2, |
|
|
factor: int = 32, |
|
|
min_pixels: int = 128 * 128, |
|
|
max_pixels: int = 16 * 16 * 2 * 2 * 2 * 6144, |
|
|
): |
|
|
if num_frames < temporal_factor: |
|
|
raise ValueError(f"t:{num_frames} must be larger than temporal_factor:{temporal_factor}") |
|
|
if height < factor or width < factor: |
|
|
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}") |
|
|
elif max(height, width) / min(height, width) > 200: |
|
|
raise ValueError( |
|
|
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" |
|
|
) |
|
|
h_bar = round(height / factor) * factor |
|
|
w_bar = round(width / factor) * factor |
|
|
t_bar = round(num_frames / temporal_factor) * temporal_factor |
|
|
|
|
|
if t_bar * h_bar * w_bar > max_pixels: |
|
|
beta = math.sqrt((num_frames * height * width) / max_pixels) |
|
|
h_bar = max(factor, math.floor(height / beta / factor) * factor) |
|
|
w_bar = max(factor, math.floor(width / beta / factor) * factor) |
|
|
elif t_bar * h_bar * w_bar < min_pixels: |
|
|
beta = math.sqrt(min_pixels / (num_frames * height * width)) |
|
|
h_bar = math.ceil(height * beta / factor) * factor |
|
|
w_bar = math.ceil(width * beta / factor) * factor |
|
|
|
|
|
return h_bar, w_bar |
|
|
|
|
|
|
|
|
class PrismaVLVideoProcessorInitKwargs(VideosKwargs, total=False): |
|
|
patch_size: int |
|
|
temporal_patch_size: int |
|
|
merge_size: int |
|
|
min_frames: int |
|
|
max_frames: int |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"Constructs a fast Prisma-VL image processor that dynamically resizes videos based on the original videos.", |
|
|
BASE_VIDEO_PROCESSOR_DOCSTRING, |
|
|
""" |
|
|
patch_size (`int`, *optional*, defaults to 16): |
|
|
The spacial patch size of the vision encoder. |
|
|
temporal_patch_size (`int`, *optional*, defaults to 2): |
|
|
The temporal patch size of the vision encoder. |
|
|
merge_size (`int`, *optional*, defaults to 2): |
|
|
The merge size of the vision encoder to llm encoder. |
|
|
""", |
|
|
) |
|
|
class PrismaVLVideoProcessor(BaseVideoProcessor): |
|
|
resample = PILImageResampling.BICUBIC |
|
|
size = {"shortest_edge": 128 * 32 * 32, "longest_edge": 32 * 32 * 768} |
|
|
image_mean = [0.5, 0.5, 0.5] |
|
|
image_std = [0.5, 0.5, 0.5] |
|
|
do_resize = True |
|
|
do_rescale = True |
|
|
do_normalize = True |
|
|
do_convert_rgb = True |
|
|
patch_size = 16 |
|
|
temporal_patch_size = 2 |
|
|
merge_size = 2 |
|
|
fps = 2 |
|
|
min_frames = 4 |
|
|
max_frames = 768 |
|
|
do_sample_frames = True |
|
|
valid_kwargs = PrismaVLVideoProcessorInitKwargs |
|
|
model_input_names = ["pixel_values_videos", "video_grid_thw"] |
|
|
|
|
|
def __init__(self, **kwargs: Unpack[PrismaVLVideoProcessorInitKwargs]): |
|
|
super().__init__(**kwargs) |
|
|
if self.size is not None and ( |
|
|
self.size.get("shortest_edge", None) is None or self.size.get("longest_edge", None) is None |
|
|
): |
|
|
raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.") |
|
|
|
|
|
def _further_process_kwargs( |
|
|
self, |
|
|
size: Optional[SizeDict] = None, |
|
|
**kwargs, |
|
|
) -> dict: |
|
|
""" |
|
|
Update kwargs that need further processing before being validated |
|
|
Can be overridden by subclasses to customize the processing of kwargs. |
|
|
""" |
|
|
if size is not None and ("shortest_edge" not in size or "longest_edge" not in size): |
|
|
raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.") |
|
|
|
|
|
return super()._further_process_kwargs(size=size, **kwargs) |
|
|
|
|
|
def sample_frames( |
|
|
self, |
|
|
metadata: VideoMetadata, |
|
|
num_frames: Optional[int] = None, |
|
|
fps: Optional[Union[int, float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Default sampling function which uniformly samples the desired number of frames between 0 and total number of frames. |
|
|
If `fps` is passed along with metadata, `fps` frames per second are sampled uniformty. Arguments `num_frames` |
|
|
and `fps` are mutually exclusive. |
|
|
|
|
|
Args: |
|
|
video (`torch.Tensor`): |
|
|
Video that need to be sampled. |
|
|
metadata (`VideoMetadata`): |
|
|
Metadata of the video containing information about total duration, fps and total number of frames. |
|
|
num_frames (`int`, *optional*): |
|
|
Maximum number of frames to sample. Defaults to `self.num_frames`. |
|
|
fps (`int` or `float`, *optional*): |
|
|
Target frames to sample per second. Defaults to `self.fps`. |
|
|
Returns: |
|
|
torch.Tensor: |
|
|
Sampled video frames. |
|
|
""" |
|
|
if fps is not None and num_frames is not None: |
|
|
raise ValueError("`num_frames` and `fps` are mutually exclusive arguments, please use only one!") |
|
|
|
|
|
total_num_frames = metadata.total_num_frames |
|
|
fps = fps if fps is not None else self.fps |
|
|
|
|
|
|
|
|
if num_frames is None and fps is not None: |
|
|
if metadata.fps is None: |
|
|
metadata.fps = 24 |
|
|
logger.warning_once( |
|
|
"Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. " |
|
|
"Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results." |
|
|
) |
|
|
num_frames = int(total_num_frames / metadata.fps * fps) |
|
|
num_frames = min(max(num_frames, self.min_frames), self.max_frames, total_num_frames) |
|
|
|
|
|
if num_frames is None: |
|
|
num_frames = min(max(total_num_frames, self.min_frames), self.max_frames) |
|
|
|
|
|
indices = np.linspace(0, total_num_frames - 1, num_frames).round().astype(int) |
|
|
|
|
|
return indices |
|
|
|
|
|
def _preprocess( |
|
|
self, |
|
|
videos: list[torch.Tensor], |
|
|
do_convert_rgb: bool = True, |
|
|
do_resize: bool = True, |
|
|
size: Optional[SizeDict] = None, |
|
|
interpolation: PILImageResampling = PILImageResampling.BICUBIC, |
|
|
do_rescale: bool = True, |
|
|
rescale_factor: float = 1 / 255.0, |
|
|
do_normalize: bool = True, |
|
|
image_mean: Optional[Union[float, list[float]]] = None, |
|
|
image_std: Optional[Union[float, list[float]]] = None, |
|
|
patch_size: Optional[int] = None, |
|
|
temporal_patch_size: Optional[int] = None, |
|
|
merge_size: Optional[int] = None, |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
grouped_videos, grouped_videos_index = group_videos_by_shape(videos) |
|
|
resized_videos_grouped = {} |
|
|
|
|
|
for shape, stacked_videos in grouped_videos.items(): |
|
|
B, T, C, H, W = stacked_videos.shape |
|
|
num_frames, height, width = T, H, W |
|
|
if do_resize: |
|
|
resized_height, resized_width = smart_resize( |
|
|
num_frames=num_frames, |
|
|
height=height, |
|
|
width=width, |
|
|
temporal_factor=temporal_patch_size, |
|
|
factor=patch_size * merge_size, |
|
|
min_pixels=size.shortest_edge, |
|
|
max_pixels=size.longest_edge, |
|
|
) |
|
|
stacked_videos = stacked_videos.view(B * T, C, H, W) |
|
|
stacked_videos = self.resize( |
|
|
stacked_videos, |
|
|
size=SizeDict(height=resized_height, width=resized_width), |
|
|
interpolation=interpolation, |
|
|
) |
|
|
stacked_videos = stacked_videos.view(B, T, C, resized_height, resized_width) |
|
|
resized_videos_grouped[shape] = stacked_videos |
|
|
resized_videos = reorder_videos(resized_videos_grouped, grouped_videos_index) |
|
|
|
|
|
|
|
|
|
|
|
grouped_videos, grouped_videos_index = group_videos_by_shape(resized_videos) |
|
|
processed_videos_grouped = {} |
|
|
processed_grids = {} |
|
|
for shape, stacked_videos in grouped_videos.items(): |
|
|
resized_height, resized_width = get_image_size(stacked_videos[0], channel_dim=ChannelDimension.FIRST) |
|
|
|
|
|
|
|
|
stacked_videos = self.rescale_and_normalize( |
|
|
stacked_videos, do_rescale, rescale_factor, do_normalize, image_mean, image_std |
|
|
) |
|
|
patches = stacked_videos |
|
|
|
|
|
|
|
|
if patches.shape[1] % temporal_patch_size != 0: |
|
|
repeats = patches[:, -1:].repeat(1, temporal_patch_size - 1, 1, 1, 1) |
|
|
patches = torch.cat([patches, repeats], dim=1) |
|
|
batch_size, grid_t, channel = patches.shape[:3] |
|
|
grid_t = grid_t // temporal_patch_size |
|
|
grid_h, grid_w = resized_height // patch_size, resized_width // patch_size |
|
|
|
|
|
patches = patches.view( |
|
|
batch_size, |
|
|
grid_t, |
|
|
temporal_patch_size, |
|
|
channel, |
|
|
grid_h // merge_size, |
|
|
merge_size, |
|
|
patch_size, |
|
|
grid_w // merge_size, |
|
|
merge_size, |
|
|
patch_size, |
|
|
) |
|
|
patches = patches.permute(0, 1, 4, 7, 5, 8, 3, 2, 6, 9) |
|
|
flatten_patches = patches.reshape( |
|
|
batch_size, |
|
|
grid_t * grid_h * grid_w, |
|
|
channel * temporal_patch_size * patch_size * patch_size, |
|
|
) |
|
|
|
|
|
processed_videos_grouped[shape] = flatten_patches |
|
|
processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size |
|
|
|
|
|
processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index) |
|
|
processed_grids = reorder_videos(processed_grids, grouped_videos_index) |
|
|
pixel_values_videos = torch.cat(processed_videos, dim=0) |
|
|
video_grid_thw = torch.tensor(processed_grids) |
|
|
data = { |
|
|
"pixel_values_videos": pixel_values_videos, |
|
|
"video_grid_thw": video_grid_thw, |
|
|
} |
|
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
|
|
|
|
|
__all__ = ["PrismaVLVideoProcessor"] |
|
|
|
|
|
|